Project description:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. We developed a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. We tested our method using bone samples from 30 vertebrate species ranging from mammals to fish.
2023-12-14 | PXD045402 | Pride
Project description:Eyeing DNA barcoding for species identification of fish larvae
Project description:The need for species identification and taxonomic discovery has led to the development of innovative technologies for large-scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species-rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or “chemocoding”, has great potential for plant identification in challenging tropical biomes. Using untargeted metabolomics in combination with multivariate analysis, we constructed species-level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next-generation DNA sequencing in the diverse and recently radiated neotropical genus, Inga (Leguminosae), both at single study sites and across broad geographic scales. Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental-scale ranges. Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short.
Project description:Temperature is an important ecological condition, and sudden temperature changes in soil can induce stress in soil-dwelling invertebrates. Soil animals can move to more favorable habitats and/or adapt physiologically to a stressful environment. Hyperthermic conditions will impact gene expression as one of the first steps. We use a transcriptomics approach to identify the transcripts of which expression changed in response to heat stress in the springtail Folsomia candida using a 5,131 probe microarray. A temperature shift from 20°C to 30°C for 30 minutes significantly altered the expression of 142 genes, of which 116 were upregulated, and 26 downregulated. Many upregulated genes encoded heat shock proteins (Hsps) or enzymes involved in the synthesis of ATP, such as members of the electron transport chain. Furthermore, genes involved in oxidative stress and anion-transporting ATPases were upregulated. Downregulated were glycoside hydrolases, involved in catalysis of certain disaccharides, which indicate an accumulation of stress-protective disaccharides. The microarray results from this study, which were validated using quantitative RT PCR, reveal a mild response to heat shock in this soil invertebrate, relative to other organisms. This may be due to specific ecological factors during evolution of soil invertebrates, such as the relatively stable temperatures in the soil habitat. This study presents potential candidate genes for future functional studies concerning thermal stress in soil-dwelling invertebrates, like e.g., the investigation of the heat hardening process.
Project description:We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale, base-resolution DNA methylation profiles of primary tissue samples from various organs. Reference-genome independent analysis of this comprehensive dataset defined a “genomic code” of DNA methylation, which allowed us to predict global and locus-specific DNA methylation from the DNA sequence within and across species. This code appears broadly conserved throughout vertebrate evolution, with two major transitions – once in the first vertebrates and again with the emergence of reptiles. Beyond the central role of species-specific DNA sequence composition, our dataset identified the tissue type and the individual as two main sources of DNA methylation variability within species. Tissue type was the dominant factor in fish, birds, and mammals, while in invertebrates, reptiles, and amphibians both factors were similarly strong. Cross-species comparisons focusing on heart and liver tissues supported a highly conserved role of DNA methylation for tissue type and identity and cross-mapping based promoter methylation analysis revealed divergence at specific genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.