ABSTRACT: Microbial acclimation of thermophilic anaerobic digestate enhances biomethane production and biodegradation of polylactic acid in combination with organic wastes
Project description:Anaerobic digestion (AD) is a core technology in management of urban organic wastes, converting a fraction of the organic carbon to methane and the residual digestate, the biorest, have a great potential to become a major organic fertilizer for agricultural soils in the future. At the same time, mitigation of N2O-emissions from the agricultural soils is needed to reduce the climate forcing by food production. Our goal was therefore to enrich for N2O reducing bacteria in AD digestates prior to fertilization, and in this way provide an avenue for large-scale and low-cost cultivation of strongly N2O reducing bacteria which can be directly introduced to agricultural soils in large enough volumes to alter the fate of nitrogen in the soils. Gas kinetics and meta-omics (metagenomics and metaproteomics) analyses of the N2O enriched digestates identified populations of N2O respiring organisms that grew by harvesting fermentation intermediates of the methanogenic consortium.
Project description:Population dynamics of methanogenic genera was investigated in pilot anaerobic digesters. Cattle manure and two-phase olive mill wastes were codigested at a 3:1 ratio in two reactors operated at 37 ï¾°C and 55 ï¾°C. Other two reactors were run with either residue at 37 ï¾°C. Sludge DNA extracted from samples taken from all four reactors on days 4, 14 and 28 of digestion was used for hybridisation with the AnaeroChip, an oligonucleotide microarray targeting those groups of methanogenic archaea that are commonly found under mesophilic and thermophilic conditions (Franke-Whittle et al. 2009, in press, doi:10.1016/j.mimet.2009.09.017).
Project description:Cyanidioschyzon merolae is a thermophilic red alga with an optimum growth temperature of 42°C. In this study we investigated the acclimation process of the alga to a colder temperature (25°C). To this aim we performed quantitative proteomic analyses of whole cells as well as solubilized thylakoid protein complexes.
2017-04-03 | PXD005615 | Pride
Project description:microbial community of thermophilic co-digestion of coffee wastes
| PRJNA433700 | ENA
Project description:microbial community of thermophilic co-digestion of coffee wastes
Project description:The proteomics study of thermophilic microorganisms in the sludge heat-treated at 75 degrees Celsius, to investigate the heat-resistant enzymes related to the hydrolysis of sludge organic matter.