Project description:Introduction: Although High Grade Serous Ovarian Cancer (HGSOC) is considered a chemo-responsive disease, a proportion of patients do not respond to platinum-based chemotherapy at presentation or have progression-free survival of <6 months. Validated biomarkers of lack of response would enable alternative treatment stratification for these patients and identify novel mechanisms of resistance. Methods: Differential DNA methylation was investigated in independent tumour sets using Illumina 27K HumanMethylation arrays and validated by bisulphite pyrosequencing. Gene expression was by Affymetrix arrays and qRT-PCR. The role of Msh homeobox 1 (MSX1) in drug sensitivity was investigated by gene reintroduction into ovarian cancer cell lines. Results: CpG sites at contiguous genomic locations within the MSX1 gene have significantly lower levels of methylation in HGSOC which recur by 6 months compared to after 12 months and/or with RECIST response (p<0.05, q<0.05). A decrease in methylation at these intragenic CpG sites was significantly correlated with decreased MSX1 gene expression. Low expression of MSX1 was associated with poor progression-free survival independent of known clinical prognostic features (p=0.014). Three mutant or wild-type TP53 expressing ovarian cancer cell lines, resistant to cisplatin, have reduced MSX1 expression compared to matched parental, platinum sensitive, lines. Re-expression of MSX1 in resistant lines led to cisplatin sensitisation, increased apoptosis, increased p21 and BAX expression. However, in two TP53-null cell lines, MSX1 failed to change cisplatin sensitivity. Conclusion: Hypomethylation of MSX1 is a biomarker of resistant HGSOC disease at presentation and identifies a novel mechanism of platinum drug resistance. Bisulphite converted DNA from the 86 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip v1.2
Project description:Introduction: Although High Grade Serous Ovarian Cancer (HGSOC) is considered a chemo-responsive disease, a proportion of patients do not respond to platinum-based chemotherapy at presentation or have progression-free survival of <6 months. Validated biomarkers of lack of response would enable alternative treatment stratification for these patients and identify novel mechanisms of resistance. Methods: Differential DNA methylation was investigated in independent tumour sets using Illumina 27K HumanMethylation arrays and validated by bisulphite pyrosequencing. Gene expression was by Affymetrix arrays and qRT-PCR. The role of Msh homeobox 1 (MSX1) in drug sensitivity was investigated by gene reintroduction into ovarian cancer cell lines. Results: CpG sites at contiguous genomic locations within the MSX1 gene have significantly lower levels of methylation in HGSOC which recur by 6 months compared to after 12 months and/or with RECIST response (p<0.05, q<0.05). A decrease in methylation at these intragenic CpG sites was significantly correlated with decreased MSX1 gene expression. Low expression of MSX1 was associated with poor progression-free survival independent of known clinical prognostic features (p=0.014). Three mutant or wild-type TP53 expressing ovarian cancer cell lines, resistant to cisplatin, have reduced MSX1 expression compared to matched parental, platinum sensitive, lines. Re-expression of MSX1 in resistant lines led to cisplatin sensitisation, increased apoptosis, increased p21 and BAX expression. However, in two TP53-null cell lines, MSX1 failed to change cisplatin sensitivity. Conclusion: Hypomethylation of MSX1 is a biomarker of resistant HGSOC disease at presentation and identifies a novel mechanism of platinum drug resistance.
Project description:The homeoprotein Msx1 and Msx2 involved in normal skeletal muscle development and also contribute to muscle defects if altered during development. Deciphering the downstream signaling networks of Msx1 and Msx2 in myoblasts differentiation will help us to understand the molecular events that contribute to muscle defects. The objective of this study was to evaluate the proteomics characteristics in Msx1 and Msx2 mediated myoblasts differentiation, using isobaric tags for the relative and absolute quantification labelling technique (iTRAQ). The results showed that 1535 proteins with quantitative information were obtained. Volcano plots illustrated, in undifferentiated stage, 32 common downstream regulatory proteins for Msx1 and Msx2, 39 specific regulatory proteins for Msx1, and 13 specific for Msx2. While, in differentiated stage, 17 common downstream regulatory proteins for Msx1 and Msx2, 10 specific regulatory proteins for Msx1, and 21 specific for Msx2. Gene ontology, KEGG pathway and protein-protein interaction networks analyses revealed these proteins primarily associated with Arginine and proline metabolism, Glycolysis/Gluconeogenesis, Fatty acid degradation, Metabolism of xenobiotics by cytochrome P450 and Apoptosis. In addition, our data shows Acta1 was probably a core of the downstream regulatory networks of Msx1 and Msx2 in skeletal muscle development. The findings will help us to understand the molecular roles of Msx1 and Msx2 during muscle development as well as regeneration, and to understand the molecular events that contribute to muscle defects.
Project description:Homeobox genes encode transcription factors regulating basic processes in cell differentiation during embryogenesis and in the adult. Recently, we have reported the NKL-code which describes physiological expression patterns of nine NKL homeobox genes in early hematopoiesis and in lymphopoiesis including main stages of T-, B- and NK-cell development. Aberrant activity of NKL homeobox genes is involved in the generation of hematological malignancies including T-cell leukemia. Here, we searched for deregulated NKL homeobox genes in main entities of T-cell lymphomas comprising peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), anaplastic large cell lymphoma (ALCL), adult T-cell leukemia/lymphoma (ATLL), hepatospleenic T-cell lymphoma (HSTL), and NK/T-cell lymphoma (NKTL). Our data revealed in all types altogether 19 aberrantly overexpressed genes, demonstrating that deregulated NKL homeobox genes play a significant role in T-cell lymphomas as well. For detailed analyses we focused on NKL homeobox gene MSX1 which is normally expressed in NK-cells and aberrantly activated in T-cell leukemia. This gene was overexpressed in subsets of HSTL patients and HSTL-derived sister cell lines DERL-2 and DERL-7 which served as models to identify mechanisms of deregulation. We performed genomic and expression profiling and whole genome sequencing and revealed mutated and deregulated gene candidates including the fusion gene CD53-PDGFRB exclusively expressed in DERL-2. Subsequent knockdown experiments allowed the construction of an aberrant network involved in MSX1 deregulation containing chromatin factors AUTS2 and H3B/H3.1, PDGF- and BMP-signalling pathways, and homeobox genes NKX2-2 and PITX1. The gene encoding AUTS2 is located at 7q11 and may represent a basic target of the HSTL hallmark aberration i(7q). Our data indicate both oncogenic and tumor suppressor functions of MSX1 in HSTL, reflecting its activity in early lineage differentiation of T- and NK-cells and the presence of NK-cell like characteristics in malignant HSTL cells. In this context, NKL homeobox gene MSX1 may represent a selective target in HSTL tumor evolution. Together, the data highlight an oncogenic role of deregulated NKL homeobox genes in T-cell lymphoma and identified MSX1 as a novel player in HSTL, involved in aberrant NK- and T-cell differentiation.
Project description:Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1−/− mice exhibit developmental arrest of all tooth germs at the bud stage, however, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1−/− and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1−/− and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of Dkk in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of Dkk alone was insufficient to rescue tooth morphogenesis in Msx1−/− mice, pharmacological inhibition of Dkk in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1−/− mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway drives tooth organogenesis by activating Wnt signaling via regulation of the secreted Wnt antagonists.
Project description:Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1−/− mice exhibit developmental arrest of all tooth germs at the bud stage, however, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1−/− and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1−/− and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of Dkk in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of Dkk alone was insufficient to rescue tooth morphogenesis in Msx1−/− mice, pharmacological inhibition of Dkk in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1−/− mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway drives tooth organogenesis by activating Wnt signaling via regulation of the secreted Wnt antagonists.
Project description:Msh homeobox 1 (MSX1) is a transcription factor implicated in neural crest specification. Ectopic expression of MSX1 reprograms mature melanocytes into a neural crest-like state as a single factor. MSX1-reprogrammed melanocytes lose pigmentation and become multipotent. To identify immediate targets of MSX1, we generated a tetracycline-inducible system (Tet-ON) in order to express MSX1 in primary melanocytes (iMSX1) in a clean and rapid way starting at defined time points and perform a global gene expression analysis.
Project description:The mandible of the jawed vertebrate is derived from the mandibular process of the first pharyngeal arch of the early embryo. The first pharyngeal arch consists of cells from all three germ layers, with the neural crest giving rise to all the skeletal elements of the mandible. The correct patterning of the neural crest cells by spatially and temporally controlled expression of various transcription factors during mandible development is crucial for the proper morphogenesis of the lower jaw. Msx family genes encode transcription factors which contain the conserved homeodomain. Among the three members of Msx genes, Msx1 and Msx2 are expressed in the neural crest and epithelium of distal mandibular process during early embryonic development with partially overlapped expression patterns. Msx1-/- mouse embryos develop multiple craniofacial developmental defects including tooth agenesis, cleft palate, and hypoplastic mandible. Although no jaw defects were observed in Msx2-/- mouse embryos, Msx1-/-Msx2-/- mouse embryos exhibit significantly severer mandibular defects compared to Msx1-/- mouse embryos, suggesting a partial functional redundancy between the two genes in mandible development. Besides the direct roles of Msx1 and Msx2 in the development of the mandibular neural crest, the phenotypes of Msx1-/-Msx2-/- may also contributed by secondary impacts from defective pre-migrative neural crest and non-neural crest tissues. Here we performed the gene expression profiling by RNA-seq in the distal mandibular processes of Msx1f/f;Msx2f/f;Hand2-Cre and Msx1f/+;Msx2f/f;Hand2-Cre embryos at E10.75, the former developed distally truncated mandible at later stages while the latter served as morphologically normal littermate control. Comparing the gene expression profiles of the two will give us insight into the functions of Msx1 and Msx2 expressed in mandibular neural crest cells in the development of the mandible.