Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in maize, we generated small RNA sequences from maize seedlings that grew under control and under dought, salt, and cold stress treatments.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in maize, we generated small RNA sequences from maize seedlings that grew under control and under dought, salt, and cold stress treatments. Sequencing of small RNAs in maize under control, drought, salt, and cold stress conditions.
Project description:<p>Cold stress negatively affects maize (<em>Zea mays</em> L.) growth, development and yield. Metabolic adjustments contribute to the adaptation of maize under cold stress. We show here that the transcription factor INDUCER OF CBF EXPRESSION 1 (ZmICE1) plays a prominent role in reprogramming amino acid metabolome and <em>COLD-RESPONSIVE</em> (<em>COR</em>) genes during cold stress in maize. Derivatives of amino acids glutamate/asparagine (Glu/Asn) induce a burst of mitochondrial reactive oxygen species, which suppress the cold-mediated induction of <em>DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 1</em> (<em>ZmDREB1</em>) genes and impair cold tolerance. ZmICE1 blocks this negative regulation of cold tolerance by directly repressing the expression of the key Glu/Asn biosynthesis genes, <em>ASPARAGINE SYNTHETASEs</em>. Moreover, ZmICE1 directly regulates the expression of <em>DREB1s</em>. Natural variation at the <em>ZmICE1</em> promoter determines the binding affinity of the transcriptional activator ZmMYB39, a positive regulator of cold tolerance in maize, resulting in different degrees of <em>ZmICE1</em> transcription and cold tolerance across inbred lines. This study thus unravels a mechanism of cold tolerance in maize and provides potential targets for engineering cold-tolerant varieties.</p>
2022-10-31 | MTBLS4404 | MetaboLights
Project description:Maize genotypes under cold/heat stress
| PRJNA657262 | ENA
Project description:Transcriptome data for different rice under cold stress
| PRJNA878693 | ENA
Project description:Full-length transcriptome analysis of maize root tips under cold stress
Project description:PARE (parallel analysis of RNA ends) was performed to study the change of uncapped mRNAs before and after cold treatment in Brachypodium. Different change patterns were identified. We have provided a complete view of uncapped transcriptome under cold stress condition, which will deepen our understanding of gene expression regulation in cold stress response as well as cold stress response mechanism for monocot plants.
Project description:Sequencing of 46 maize leaf whole transcriptome revealed 77 differentially expressed genes (DEGs) between Lancaster and Non-Lancaster maize genetic resources under optimal growing conditions. Cold test of the subset of four Lancaster and four Non-Lancaster lines showed that the first were cold sensitive and the later cold tolerant, with the majority of identified DEGs showing FPKM values above the plate mean in Lancaster, but below the plate mean in Non-Lancaster subset. Cold induced expression analysis for revealed that, among seven tested DEGs, ATP-sulfurylase and photosystem II I encoding genes showed responsiveness to low temperatures in a genetic-background-dependent manner, likely contributing to different cold response/adaptability of Lancaster and Non-Lancaster lines.
Project description:Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and cold response as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
2023-07-14 | GSE167881 | GEO
Project description:Transcriptome sequencing under cold stress