Project description:The molecular mechanisms of aging are unsolved and fascinating fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding to the 3’ untranslated regions (3’ UTR) in the mRNA of target genes. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF, a mitochondrial fission factor, and subsequently regulate longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. We generate these mutations in C. elegans, those mutations reduced the fertility and extended the lifespan. We deep sequenced total mRNAs from wild-type and puf-8 mutant worms and conducted in vitro RNA pull-down experiments. Six PUF-8 regulated genes were identified, in which their mRNA 3’ UTRs contain at least one PUF-binding element (PBE). One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8(-) animals. Therefore, PUF-8 may regulate the lifespan of C. elegans via modulating pqm-1-related pathways
Project description:Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG->TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG->TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.
Project description:Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG->TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG->TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.
Project description:Activating mutations in RAS GTPases drive one fifth of cancers, but poor understandings of many RAS effectors and regulators, and of the roles of their different paralogs, continue to impede drug development. We developed a multi-stage discovery and screening process to understand RAS function and identify RAS-related susceptibilities in lung adenocarcinoma. Using affinity purification mass spectrometry (AP/MS), we generated a protein-protein interaction map of the RAS pathway containing thousands of interactions. From this network we constructed a CRISPR dual knockout library targeting 119 RAS-related genes that we screened for genetic interactions (GIs). We found important new effectors of RAS-driven cellular functions, RADIL and the GEF RIN1, and over 250 synthetic lethal GIs, including a potent KRAS-dependent interaction between RAP1GDS1 and RHOA. Many GIs link specific paralogs within and between gene families. These findings illustrate the power of the multiomic approach to identify synthetic lethal combinations for hitherto undruggable cancers.
Project description:Recently developed covalent inhibitors for RasG12C provide the first pharmacological tools to target mutant Ras-driven cancers. However, the rapid development of resistance to current clinical Ras G12C inhibitors is common. Presumably, a subpopulation of RasG12C-expressing cells adapt their signaling to evade these inhibitors and the mechanisms for this phenomenon are unclear due to the lack of tools that can measure signaling with single-cell resolution. Here, we utilized recently developed Ras sensors to profile the environment of active Ras and to measure the activity of endogenous Ras in order to pair structure (Ras signalosome) to function (Ras activity), respectively, at a single-cell level. With this approach, we identified a subpopulation of KRasG12C cells treated with RasG12C-GDP inhibitors underwent oncogenic signaling and metabolic changes driven by WT Ras at the golgi and mutant Ras at the mitochondria, respectively. Our Ras sensors identified Major Vault Protein (MVP) as a mediator of Ras activation at both compartments by scaffolding Ras signaling pathway components and metabolite channels. We found that recently developed RasG12C-GTP inhibitors also led to MVP-mediated WT Ras signaling at the golgi, demonstrating that this a general mechanism RasG12C inhibitor resistance. Overall, single-cell analysis of structure-function relationships enabled the discovery of a RasG12C inhibitor-resistant subpopulation driven by MVP, providing insight into the complex and heterogenous rewiring occurring during drug resistance in cancer.
Project description:Here we show that pan-haematopoietic ERG expression driven by the Vav promoter induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and human AML with high ERG expression. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel enhancer element validated in transgenic mice, and Pim1 inhibition disrupts growth and induces apoptosis of ERG-driven leukemic cells. In addition, ERG indirectly induces the RAS pathway and direct RAS inhibition by a RAS inhibitor blocks growth of leukemia cells in vitro and in vivo. Thus, integrative genomic analysis of transgenic ERG leukemias reveals mechanisms and potential therapeutic targets of high ERG expressing AML. Spleen cells were fixed with 1% formaldehyde and ChIP assays were performed as previously described (Wilson NK et al., 2010 Cell Stem Cell) using polyclonal antibodies against ERG-1/2/3 (clone C-17, Sc354X, Santa Cruz) and control nonspecific rabbit IgG (I5006, Sigma).
Project description:PUF family proteins are among the best characterized regulatory RNA-binding proteins in non-mammalian species, but relatively little is known about mRNA targets or functions of mammalian PUF proteins. In this study, we used ribonomic analysis to identify and analyze mRNAs associated with ribonucleoproteins containing an endogenous human PUF protein, Pum1. Pum1 associated mRNAs were highly enriched for genes encoding proteins that function in transcriptional regulation and cell cycle/proliferation, results consistent with the post-transcriptional RNA regulon model and the proposed ancestral functions of PUF proteins in stem cell biology. Analysis of 3’UTR sequences of Pum1 associated mRNAs revealed a core Pum1 consensus sequence, UGUAHAUA. Pum1 knockdown demonstrated that Pum1 enhances decay of associated mRNAs, and re-localization of Pum1 to stress granules suggested that Pum1 functions in repression of translation. This study is the first in vivo genome-wide mRNA target identification of a mammalian PUF protein and provides direct evidence that human PUF proteins regulate stability of associated mRNAs. Comparison of Pum1 associated mRNAs to mRNA targets of PUF proteins from S. cerevisiae and Drosophila demonstrates how a well conserved RNA-binding domain and cognate binding sequence have been evolutionarily rewired to regulate the collective expression of different sets of functionally related genes. Keywords: RIP-chip
Project description:We have defined the mechanism of action of lurbinectedin, a marine-derived drug exhibiting a potent anti-tumorigenic activity across several cancer cell lines and tumor xenografts. This drug currently undergoing clinical evaluation in ovarian, breast and small-cell lung cancer patients inhibits the transcription process through (1) its binding to CG rich sequences, mainly located around the promoter of protein coding genes; (2) the irreversible stalling of elongating RNA polymerase II (Pol II) on the DNA template and its specific degradation by the ubiquitin/proteasome machinery and (3) the generation of DNA breaks. The finding that inhibition of Pol II phosphorylation prevents its degradation and the formation of DNA breaks after drug treatment underscores the connection between transcription elongation and DNA repair. Our results not only help to better understand the high specificity of this drug in cancer therapy but also improve our understanding of an important transcription regulation mechanism.
Project description:Tumor-associated macrophages/microglia (TAMs) are prominent microenvironment components in human glioblastoma (GBM) that are potential targets for anti-tumor therapy. However, TAM depletion by CSF1R inhibition showed mixed results in clinical trials. We hypothesized that GBM subtype-specific tumor microenvironment convey distinct sensitivities to TAM targeting.We generated syngeneic PDGFB-driven and RAS-driven GBM models that resemble proneural-like and mesenchymal-like gliomas, and determined the effect of TAM targeting by CSF1R inhibitor PLX3397 on glioma growth. We also investigated the co-targeting of TAMs and angiogenesis on PLX3397-resistant RAS-driven GBM. Using single-cell transcriptomic profiling, we further explored differences in tumor microenvironment cellular compositions and functions in PDGFB- and RAS-driven gliomas. We found that growth of PDGFB-driven tumors was markedly inhibited by PLX3397. In contrast, depletion of TAMs at the early phase accelerated RAS-driven tumor growth and had no effects on other proneural and mesenchymal GBM models. In addition, PLX3397-resistant RAS-driven tumors did not respond to PI3K signaling inhibition. Single-cell transcriptomic profiling revealed that PDGFB-driven gliomas induced expansion and activation of pro-tumor microglia, whereas TAMs in mesenchymal RAS-driven GBM were enriched in pro-inflammatory and angiogenic signaling. Co-targeting of TAMs and angiogenesis decreased cell proliferation and changed the morphology of RAS-driven gliomas.Our work identify functionally distinct TAM subpopulations in the growth of different glioma subtypes. Notably, we uncover a potential responsiveness of resistant mesenchymal-like gliomas to combined anti-angiogenic therapy and CSF1R inhibition. These data highlight the importance of characterization of the microenvironment landscape in order to optimally stratify patients for TAM-targeted therapy.