Project description:Complement component 3a receptor 1 (C3ar1) was predicted as a causal gene for abdominal using a novel statistical method named LCMS (Schadt et al., 2005, Nature Genetics). In order to validate this prediction, we profiled the liver tissues of complement component 3a receptor 1 knockout (C3ar1-/-) mice and their littermate wild-type (wt) controls to examine the gene expression signature as well as pathways/networks resulting from the single gene perturbation. 3 C3ar1-/- mice and 4 wt controls were profiled. Reference pool included RNA extracted from the liver of 6 wt control mice. Dye-swap was involved in the profiling.
Project description:Complement component 3a receptor 1 (C3ar1) was predicted as a causal gene for abdominal using a novel statistical method named LCMS (Schadt et al., 2005, Nature Genetics). In order to validate this prediction, we profiled the liver tissues of complement component 3a receptor 1 knockout (C3ar1-/-) mice and their littermate wild-type (wt) controls to examine the gene expression signature as well as pathways/networks resulting from the single gene perturbation.
Project description:A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes, and identification of involved pathways and networks. This SuperSeries is composed of the following subset Series: GSE11991: Liver gene expression profiling of lipoprotein lipase heterozygous knockout mice GSE11992: Liver gene expression profiling of cytosolic malic enzyme knockout mice GSE11993: Liver gene expression profiling of zinc finger binding protein 90 (Zfp90) transgenic mice GSE11994: Liver gene expression profiling of transforming growth factor beta receptor 2 heterozygous knockout (Tgfbr2+/-) mice GSE11995: Liver gene expression profiling of complement component 3a receptor 1 knockout (C3ar1-/-) mice GSE11996: Gas7 male transgenic liver expression vs FVB male wildtype control GSE11997: Gpx3 male transgenic liver expression vs B6/DBA male wildtype control GSE11998: Gyk female heterozygous liver expression vs C57Bl/6J female wildtype control GSE11999: Lactb male transgenic liver expression vs FVB male wildtype control Refer to individual Series
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:The ketogenic diet has been successful in promoting weight loss among patients that have struggled with weight gain. This is due to the cellular switch in metabolism that utilizes liver-derived ketone bodies for the primary energy source rather than glucose. Fatty acid transport protein 2 (FATP2) is highly expressed in liver, small intestine, and kidney where it functions in both the transport of exogenous long chain fatty acids (LCFA) and in the activation to CoA thioesters of very long chain fatty acids (VLCFA). We have completed a multi-omic study of FATP2-null (Fatp2-/-) mice maintained on a ketogenic diet (KD) or paired control diet (CD), with and without a 24-hour fast (KD-fasted and CD-fasted) to address the impact of deleting FATP2 under high-stress conditions. Control (wt/wt) and Fatp2-/- mice were maintained on their respective diets for 4-weeks. Afterwards, half the population was sacrificed while the remaining were fasted for 24-hours prior to sacrifice. We then performed paired-end RNA-sequencing on the whole liver tissue to investigate differential gene expression. The differentially expressed genes mapped to ontologies such as the metabolism of amino acids and derivatives, fatty acid metabolism, protein localization, and components of the immune system’s complement cascade, and were supported by the proteome and histological staining.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease