Project description:A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes, and identification of involved pathways and networks. This SuperSeries is composed of the following subset Series: GSE11991: Liver gene expression profiling of lipoprotein lipase heterozygous knockout mice GSE11992: Liver gene expression profiling of cytosolic malic enzyme knockout mice GSE11993: Liver gene expression profiling of zinc finger binding protein 90 (Zfp90) transgenic mice GSE11994: Liver gene expression profiling of transforming growth factor beta receptor 2 heterozygous knockout (Tgfbr2+/-) mice GSE11995: Liver gene expression profiling of complement component 3a receptor 1 knockout (C3ar1-/-) mice GSE11996: Gas7 male transgenic liver expression vs FVB male wildtype control GSE11997: Gpx3 male transgenic liver expression vs B6/DBA male wildtype control GSE11998: Gyk female heterozygous liver expression vs C57Bl/6J female wildtype control GSE11999: Lactb male transgenic liver expression vs FVB male wildtype control Refer to individual Series
Project description:Untargeted lipidomics of liver samples from female and male DBA/2J or C57BL/6J mice fed a control diet, Western diet, or high- or low-isoleucine Western diet. Both positive and negative mode are included.
Project description:To quantify gene expression differences in olfactory epithelium between the mouse (Mus musculus) and the Nile rat (Arvicanthis niloticus), paired-end RNA sequencing (RNA-seq) was used to profile olfactory epithelium transcriptomes of six Nile rats and six mice (C57BL/6J) (one male and one female at the age of 8, 12, and 16 weeks for each species).
Project description:Comparison of gene expression in wildtype and MyD88-/- C57BL/6J mouse macrophages treated with 10 ng/mL LPS for 2 hours versus media treated control macrophages, and, wildtype and MyD88-/- C57BL/6J mouse macrophages treated with live E. coli bacteria (log phase; 1 bact per 1 macrophage) for 2 hours versus media treated control macrophages. Cells from 4 mice of each geneotype were used and each individual provided its own control. Hybridizations of treated and control samples from each mouse were dye swap replicated. Wildtype macrophages treated with LPS vs control (GSM22617-GSM22623,GSM22625), MyD88-/- macrophages treated with LPS vs control (GSM22626-GSM22632), wldtype macrophages treated with E. coli vs control (GSM22633-GSM22640, and MyD88-/- macrophages treated with E. coli vs control (GSM22641-GSM22648). Keywords: other
Project description:We identified genes expressed in mouse liver that are regulated by Cux2, a highly female-specific liver transcription factor whose expression is regulated by sex-dependent plasma GH patterns. Using siRNA to knockdown Cux2 expression in female liver, we show that female specific genes are predominantly repressed by Cux2 knockdown. In contrast, similar numbers of male-biased genes are repressed as are induced by Cux2 knockdown. A scrambled, non-specific siRNA was used as a control. (Published in: TL Conforto et al 2012, Mol Cell Biol. 2012, 32:4611-4627. PubMed PMID: 22966202; PMCID: PMC3486175)
Project description:Fatty acid transport protein 2 (FATP2) is highly expressed in liver, small intestine, and kidney where it functions in both the uptake of exogenous long chain fatty acids (LCFAs) and in the activation to CoA thioesters of very long chain fatty acids (VLCFAs). Here we address the phenotypic impacts of deleting FATP2 followed by an unbiased RNA-seq analysis of the liver transcriptome. Wild type (C57BL/6J) and fatp2 null (fatp2-/-) mice (5 weeks old) were maintained on a standard chow diet for 6 weeks (11 weeks old). The male fatp2-/- mice had 258 differentially expressed genes (DEGs) and the female mice had a total of 91. Of significance was the finding that most of the genes with increased expression in the fatp2-/- liver are regulated by the transcription factor peroxisome proliferator-activated receptor alpha (PPARα). Taken together, FATP2 has a broad impact on the expression of key lipid metabolic genes in the liver regulated by PPARα.
Project description:We identified genes expressed in mouse liver that are regulated by Cux2, a highly female-specific liver transcription factor whose expression is regulated by sex-dependent plasma GH patterns. Using siRNA to knockdown Cux2 expression in female liver, we show that female specific genes are predominantly repressed by Cux2 knockdown. In contrast, similar numbers of male-biased genes are repressed as are induced by Cux2 knockdown. A scrambled, non-specific siRNA was used as a control. (Published in Molec Cell Biology, TL Conforto et al, 2012) Liver RNA isolated from the following 3 groups of mice was used in the present study: (1) 8 wk old female mice treated with non-specific siRNA control (n = 13; 6 or 7 per each pool); (2) 8 wk old female mice treated with Cux2 siRNA and euthanized 5 days later (n = 5; 2 or 3 per each pool); (3) 8 wk old female mice treated with Cux2 siRNA and euthanized 8 days later (n = 4; 2 per each pool). These RNA pools were used in two separate sets of competitive hybridization experiments: 1) 8 wk non-specific siRNA treated vs. 8 wk Cux2 siRNA treated for 5 days; 2) 8 wk non-specific siRNA treated vs. 8 wk Cux2 siRNA treated for 8 days. Fluorescent labeling of RNA and hybridization of the Alexa 555-labeled (green) and Alexa 647-labeled (red) RNA samples to Agilent Mouse Gene Expression 4x44k v1 microarrays (Agilent Technology, Palo Alto, CA; catalog # G4122F-014868) were carried out, with dye swapping for each of the two hybridization experiments to eliminate dye bias. Two microarrays, one for each mixed cDNA sample, were hybridized for each of the two fluorescent reverse pairs, giving a total of 4 microarrays.