Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.
Project description:Previously, we investigated the effect of fungal VOCs on the behavior of phylogenetically different soil bacteria (Schmidt et al 2015). In these experiments we showed that VOCs emitted by several fungi can lead to phenotypical responses in bacteria, for example, by inducing a change in motility (Schmidt et al 2015). We observed that the plant pathogenic fungus Fusarium culmorum produced a unique cluster of VOCs consisting primarily of terpenes. When exposed to the VOCs emitted by this fungus, the rhizobacterium Serratia plymuthica PRI-2C responded with an induction of motility. It is plausible that in soil, microorganisms sense changes in their environments via shifts in VOCs blend and adapt their behavior accordingly (Garbeva et al 2014). Although several studies indicated that VOCs can be used as signaling molecules in microbial inter-species interactions, the following questions remain unanswered as how are VOCs perceived as signals by the microorganisms and which regulatory pathways and genes are involved in the response? To answer these questions, the rhizosphere isolate S. plymuthica PRI-2C was grown alone or exposed to VOCs emitted by F. culmorum. The bacterial transcriptome and proteome were analyzed under each situation to identify the molecular basis of the bacterial response to fungal VOCs.
Project description:Soil dwelling Aspergillus fungi possess the versatile metabolic capability to utilize complex organic compounds which are toxic to humans, yet the mechanisms they employ remain largely unknown. Benzo(a)pyrene is a common carcinogenic contaminant, posing a significant concern for human health. Here, we report that Aspergillus fungi can degrade benzo(a)pyrene effectively. In Aspergillus nidulans, exposure to benzo(a)pyrene results in transcriptomic and metabolic changes associated with cellular growth and energy generation, implying that the fungus utilizes benzo(a)pyrene as a food. Importantly, we identify and characterize the conserved bapA gene encoding a cytochrome P450 monooxygenase that exerts the first step in the degradation of benzo(a)pyrene. We further demonstrate that the fungal NF-κB-type global regulators VeA and VelB are required for benzo(a)pyrene degradation in A. nidulans, which occurs through expression control of bapA in response to nutrient limitation. Our study illuminates fundamental knowledge of fungal benzo(a)pyrene metabolism and provides novel insights into enhancing bioremediation potential.
Project description:Priestia endophytica FH5, which was isolated from healthy tomato rhizosphere soil, had biological activity against a variety of plant diseases, including R. solani. We isolated the chemicals generated by strain FH5 to better understand the interaction between strain FH5 and R. solani. A transcriptome study of strain FH5 with and without R. solani exposure was also performed. In response to the fungal pathogen R. solani, strain FH5 changed genes linked to amino acid transport, carbohydrate transport, energy generation and conversion, and inorganic ion transport and metabolism, according to our findings.
Project description:B. bassiana regulates transcriptional adaptation to host hemocoel, which is a determinant to the biocontrol potential of fungal entomopathogens. The global transcriptome related to fungal development in host was analyzed by using high throughput sequencing (RNA-Seq). Our transcriptional profiles revealed that majority of fungal genes are involved in fungal growth in host environmental, and are associated with various cellular processes.
Project description:Fungal necromass in soil represents the stable carbon pools. While fungi are known to decompose fungal necromass, how fungi decomopose melanin, remains poorly understood. Recently, Trichoderma species was found to be one of the most commonly associated fungi in soil, we have used a relevant fungal species, Trichoderma reesei, to characterized Genes involved in the decomposition of melanized and non-melanized necromass from Hyaloscypha bicolor.
Project description:The intricate interactions between plants and microorganisms have garnered substantial scientific interest. While previous studies have highlighted the potential influence of various fungal volatile compounds(VCs) on plant growth and development, the precise mechanisms underlying this modulation still need to be discovered. In this study, we discovered that fungal volatile organic compounds from the soil-borne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, following the priming of Arabidopsis with GT22 VC, it displayed an enhanced immune response, thereby mitigating the detrimental effects caused by both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs revealed the differential expression of 90, 83, and 137 genes after 3, 24, and 48 hours of volatile exposure, respectively. These responsive genes are involved in growth, hormone regulation, defense mechanisms, and signaling pathways. Notably, the induction of genes related to innate immunity, hypoxia, salicylic acid (SA) biosynthesis and camalexin biosynthesis by GT22 VCs were reported. Among the VCs emitted by GT22, limonene is particularly noteworthy. Arabidopsis seedlings exposed to limonene exhibited not only growth promotion effects but also alleviation of copper stress, indicating that limonene may play a role in the interaction between GT22 and plants. Overall, the findings of this study provide evidence supporting that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. Furthermore, our results suggest that seedlings exposed to T. inflatum GT22 VCs holds promising potential for harnessing beneficial effects to improve crop productivity.