Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.
Project description:The knowledge of the genetic architecture behind feed efficiency would allow to breed more efficient animals maximizing farm profitability and reducing the environmental impact of animal production. This study analyzes high throughput gene expression data from milk samples to determine key genes and biological mechanisms associated to feed efficiency in dairy sheep.A detailed description of the sheep management practices and calculations for the feed efficiency index (FEI) are detailed in 10.3168/jds.2020-19061. For these analyses, we selected animals with divergent FEI values from a group of 40 lactating Assaf ewes. RNA-Seq was performed on milk somatic cell samples from 8 high feed efficiency sheep (H-FE), FEI = −0.29 (SD = 0.23), RFI = −0.16 (SD = 0.25), and 8 low feed efficiency sheep (L-FE), FEI = 0.81 (SD = 0.24), RFI = 0.19 (SD = 0.24)).
Project description:Milk production in dairy cows is affected by numerous factors, including diet. Feed restriction is known to have little impact on milk total protein content but its effect on the fine protein composition is still poorly documented. The objective of this study was to describe the effects of two feed restriction trials of different intensities on the milk protein composition of Holstein cows. One restriction trial was short and of high intensity (SH), the second was long and of moderate intensity (LM). Feed restriction decreased the milk protein yield for caseins under the LM trial and of all six major milk proteins under the SH trial. These decreased yields lead to lower concentrations of αs1-, αs2- and β-caseins during the SH trial. The milk proteome was affected as a function of restriction intensity. Among the 345 proteins identified eight varied under the LM trial and 160 under the SH trial. Ontology analyses revealed their implication in carbohydrate, lipid and protein metabolisms as well as in the immune system. These proteins reflected adaptations of the animal and mammary gland physiology to feed restriction and constituted a signature of this change.