Project description:Febrile patients PCR positive for H1N1 swine flu, seasonal H1N1 and seasonal H3N2 in nasal swabs and controls consisting of febrile patients with rhinovirus infection or febrile patients of non-viral etiology (nasal swabs PCR negative for common respiratory viruses and blood PCR negative for dengue and parvovirus B19) were assessed consecutively for global transcriptional changes in whole blood
Project description:Febrile patients PCR positive for H1N1 swine flu, seasonal H1N1 and seasonal H3N2 in nasal swabs and controls consisting of febrile patients with rhinovirus infection or febrile patients of non-viral etiology (nasal swabs PCR negative for common respiratory viruses and blood PCR negative for dengue and parvovirus B19) were assessed consecutively for global transcriptional changes in whole blood Peripheral whole blood collected in PAX-gene tubes and extracted for total RNA
Project description:To elucidate the epithelial cell diversity within the nasal inferior turbinates, a comprehensive investigation was conducted comparing control subjects to individuals with house dust mite-induced allergic rhinitis. This study aimed to delineate the differential expression profiles and phenotypic variations of epithelial cells in response to allergic rhinitis. This research elucidated distinct subpopulations and rare cell types of epithelial cells within the nasal turbinates, discerning alterations induced by allergic rhinitis. Furthermore, by interrogating transcriptomic signatures, the investigation provided novel insights into the cellular dynamics and immune responses underlying allergic rhinitis pathogenesis
Project description:Viral respiratory infections are an important public health concern, due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup and bacterial co-infections. To understand these interactions within natural infections we designed a longitudinal cohort study actively surveilling 18 different respiratory viruses over the course of 19 months (2016-2018) in Manhattan, New York City. The cohort includes individuals related to daycare facilities, high school students and health care workers. We retrieved weekly epidemiological and clinical data and collected over 4,000 nasal swabs for molecular characterization from 214 participants. Transcriptomic data enabled the characterization of specific markers of immune response, the identification of signatures associated with symptom severity and bacterial co-infections. We created a computational resource to facilitate access to the data and visualization of analytical results.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.