Project description:Hepatic fibrosis, the wound-healing response to repeated liver injury, ultimately leads to cirrhosis. There is an urgent need to develop effective antifibrotic therapies. Ghrelin (encoded by Ghrl) is an orexigenic hormone that has pleiotrophic functions including protection against cell death1. Here we investigate whether ghrelin modulates liver fibrosis and protects from acute liver injury. Recombinant ghrelin reduced the fibrogenic response to prolonged bile duct ligation in rats. This effect was associated with decreased liver injury and myofibroblast accumulation as well as attenuation of the altered gene expression profile. Ghrelin also reduced fibrogenic properties in cultured hepatic stellate cells. Moreover, Ghrl-/- mice developed exacerbated hepatic fibrosis and liver damage after chronic injury. Ghrelin also protected rat livers from acute liver injury and reduced the extent of oxidative stress and the inflammatory response. In patients with chronic liver diseases, ghrelin serum levels decreased in those with advanced fibrosis and hepatic expression of the ghrelin gene correlated with expression of fibrogenic genes. Finally, in patients with chronic hepatitis C, single nucleotide polymorphisms of the ghrelin gene (-994CT and â604GA) influenced the progression of liver fibrosis. We conclude that ghrelin exerts antifibrotic effects on the liver and may represent a novel antifibrotic therapy. Experiment Overall Design: Rats were divided into three groups: control rats receiving saline (sham operation), rats with bile duct ligation receiving saline and rats with bile duct ligation receiving recombinant ghrelin (10 micrograms/Kg/day by a subcutaneous osmotic mimi-pump). For the microarray analysis samples from 6 rats were analyzed except for the ghrelin-treated group (5 rats).
Project description:Hepatic fibrosis, the wound-healing response to repeated liver injury, ultimately leads to cirrhosis. There is an urgent need to develop effective antifibrotic therapies. Ghrelin (encoded by Ghrl) is an orexigenic hormone that has pleiotrophic functions including protection against cell death1. Here we investigate whether ghrelin modulates liver fibrosis and protects from acute liver injury. Recombinant ghrelin reduced the fibrogenic response to prolonged bile duct ligation in rats. This effect was associated with decreased liver injury and myofibroblast accumulation as well as attenuation of the altered gene expression profile. Ghrelin also reduced fibrogenic properties in cultured hepatic stellate cells. Moreover, Ghrl-/- mice developed exacerbated hepatic fibrosis and liver damage after chronic injury. Ghrelin also protected rat livers from acute liver injury and reduced the extent of oxidative stress and the inflammatory response. In patients with chronic liver diseases, ghrelin serum levels decreased in those with advanced fibrosis and hepatic expression of the ghrelin gene correlated with expression of fibrogenic genes. Finally, in patients with chronic hepatitis C, single nucleotide polymorphisms of the ghrelin gene (-994CT and –604GA) influenced the progression of liver fibrosis. We conclude that ghrelin exerts antifibrotic effects on the liver and may represent a novel antifibrotic therapy.
Project description:The aim is to characterize rat liver fibrosis induced by bile duct ligation (BDL). To induce hepatic fibrosis, Male Sprague Dawley rats (9-12 weeks of age and 380-420 g of weight upon arrival, supplied by Beijing Vital River laboratory animal Co., Ltd.) underwent surgery of bile duct ligation (BDL). The bile ducts of Sprague-Dawley rats were ligated after 12 hours of fasting and water deprivation. Rat liver samples were collected from three groups of rats at week 1, 2 and 5 after BDL surgery. Three control groups of rats underwent sham operation, including bile duct mobilization, but without BDL. Three biological replicates were used for each group.
Project description:Gene expression of hepatic stellate cells exposed to fetal bovine serum (FBS) (cultured alone and in the presence of Kupffer cells) activated and CCl4 exposure and Bile-duct ligation is characterized. Affymetrix Mouse 430 2.0 gene expression measurements were used to characterize the transcriptomic basis of the effects of the above treatments and genotypes on firbrogenesis. Gene expression of mouse hepatic stellate cells was characterized under the following conditions: A. Quiescent (n=5). B. Activated by FBS (n=3). C. Cocultured with Kupffer cells and activated by FBS (n=3). D. Activate by bile-duct ligation (n=3). E. Activated by CCl4 (n=3).
Project description:Huang-Lian-Jie-Du-Decoction, a traditional Chinese formula, has been reported to protect liver from various injuries. Two cholestasis models of rats induced by thioacetamide and by bile duct ligation were established and treated with Huang-Lian-Jie-Du-Decoction. Nuclear Magnetic Resonance-based urinary metabolic profiles were analyzed by orthogonal partial least squares discriminant analysis and univariate analysis to excavate differential metabolites associated with the injuries of the two models and the treatment effects of Huang-Lian-Jie-Du-Decoction. The two cholestatic models shared common metabolic features of excessive fatty acid oxidation, insufficient glutathione regeneration and disturbed gut flora, with specific characteristics of inhibited urea cycle and DNA damage in thioacetamide-intoxicated model, and perturbed Kreb's cycle and inhibited branched chain amino acid oxidation in bile duct ligation model. With good treatment effects, Huang-Lian-Jie-Du-Decoction could regain the balance of the disturbed metabolic status common in the two cholestasis injuries, e.g., unbalanced redox system and disturbed gut flora; and perturbed urea cycle in thioacetamide-intoxicated model and energy crisis (disturbed Kreb's cycle and oxidation of branched chain amino acid) in bile duct ligation model, respectively.
Project description:Gene expression of hepatic stellate cells exposed to fetal bovine serum (FBS) (cultured alone and in the presence of Kupffer cells) activated and CCl4 exposure and Bile-duct ligation is characterized. Affymetrix Mouse 430 2.0 gene expression measurements were used to characterize the transcriptomic basis of the effects of the above treatments and genotypes on firbrogenesis.