Project description:In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming. Global gene expression effects of silencing the Esrrb gene. We used microarrays to detail the global programme of gene expression after silencing the Esrrb gene. Keywords: time-course Three biological replicates each for control GFP and Esrrb RNAi. The global gene expression profiles of the Esrrb knockdown cells were compared to control GFP knockdown cells for days 2, 4 and 6.
Project description:In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming. Global gene expression effects of silencing the Esrrb gene. We used microarrays to detail the global programme of gene expression after silencing the Esrrb gene. Keywords: time-course
Project description:In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming. We used microarrays to detail the global programme of gene expression of ES cells, Esrrb reprogrammed iPS cell lines and MEFs. Keywords: comparative
Project description:Orphan nuclear receptor Esrrb is vital in maintaining ES cells and like Oct4, Sox2 and Nanog is essential for self-renewal and pluripotency. Esrrb functions in somatic cells via LBD/AF-2-dependent coactivator recruitment to target genes. Here we show that in ES cells coactivator recruitment is similarly required and identify Ncoa3 as the Esrrb coactivator needed for activation of its target genes. Ncoa3 is essential for self-renewal and the induction of pluripotency in reprogramming, and genome-wide analysis of Ncoa3 binding reveals extensive overlap with Esrrb and pluripotency factors along with marks of active genes. Mechanistically, we show Ncoa3 is specifically required to bridge RNApol2 to Esrrb. We thus identify a new member of the ES pluripotency network and describe Esrrb and Ncoa3 as key factors linking core pluripotency factors to the general transcription machinery. Three biological replicates each for control scrambled shRNA and Ncoa3 shRNA transfected E14 mouse ESCs. The global gene expression profiles of Ncoa3 knockdown cells were compared to control scrambled shRNA knockdown cells 4 days post-transfection.
Project description:This SuperSeries is composed of the following subset Series: GSE37262: A Nuclear Receptor Coactivator is Essential for Esrrb Activity and the Induction and Maintenance of the ES Cell State GSE40192: Global gene expression analysis of Ncoa3 knockdown in mouse embryonic stem cells Refer to individual Series
Project description:Estrogen related receptor beta (Esrrb) is an orphan nuclear receptor that is required for self-renewal and pluripotency in mouse embryonic stem (ES) cells. However, in the early post-implantation mouse embryo, Esrrb is specifically expressed in the extraembryonic ectoderm (ExE) and plays a crucial role in trophoblast development. In this study, to better understand the function of Esrrb in trophoblast lineage cells, we performed microarray analysis of Esrrb-null mutant versus wild-type mouse embryos. To further characterize the regulatory targets of Esrrb, we treated trophoblast stem (TS) cells with either Esrrb inhibitor DES or vehicle and compared their global gene expression profile via RNA-seq analysis. In addition, to ask whether these target genes are directly regulated by Esrrb, we performed Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis of TS cells using anti-Esrrb antibody.
Project description:Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4 and Myc (OSKM) into somatic cells. Though iPSCs are pluripotent, they frequently exhibit high variation in their quality as measured by chimera contribution and tetraploid (4n) complementation. Thus, improving the quality of iPSCs is an indispensable prerequisite for future iPSC-based therapy. Here we show that one major determinant for iPSCs quality is the combination of reprograming factor selected. Ectopic expression of Sall4, Nanog, Esrrb and Lin28 (SNEL) in MEFs efficiently generated high quality iPSCs as compared to other combinations of factors. SNEL-iPSCs produced approximately 5 times more efficiently M-bM-^@M-^\all-iPSCM-bM-^@M-^] mice compared to OSKM-iPSCs. While differentially methylated regions, transcript number of master regulators, establishment of ESC-specific super enhancers, and global aneuploidy were comparable between the lines, aberrant expression of 1,765 genes, trisomy of chromosome 8 and abnormal H2A.X deposition were frequently observed in poor quality OSK-iPSCs and OSKM-iPSCs. ChIP-Seq for Med1 in reprogrammed and partially reprogrammed mouse embryonic stem cell lines and corresponding controls