Project description:This study began with 72 male 4-week-old BALB/c mice. The mice were split evenly into one of four cohorts: Control, River, Pine, and Road. The control mice were raised with standard corn cob bedding whereas the remaining mice were raised with clean bedding amended with 300 mL of one of three different types of soil. The soil exposure continued throughout the experiment, with 300 mL of new soil added with bi-weekly cage changes. The soils used to amend the cage bedding were previously characterized as having high (Pine), medium (River), and low (Road) diversity. The River and Pine soil were collected from Duke Forest and the Road soil was collected adjacent to Highway 15-501 in Chapel Hill, North Carolina. All mice were given a standard diet and the cages were distributed reverse osmosis treated water through a centralized Lixit® system that was fed to each cage in parallel. After 32 days of standard rearing with amended soils, the mice were exposed via oropharyngeal aspiration to either live influenza A (PR8) virus or heat inactivated (HI) virus.
Project description:Seasonal wood development results in two distinct wood types: earlywood (EW) and latewood (LW), which is the major cause of wood qaulity variation. We investigate transcriptome reorganization during seasonal wood development in radiata pine using a newly developed 18k cDNA microarrays. Three sampling trees each at juvenile (5 yrs), transition (9 yrs) and mature (14 yrs) ages (based on the wood rings at breast height) were selected from a plantation forest of radiata pine at Bondo, NSW , Australia (35º 16' 44.04 S, 148º 26' 54.66 E). The sampling trees at juvenile and mature ages were grown within 50 m distance and under similar environment. Two sampling trees at rotation age (30 yrs) were chosen at Yarralumla, ACT, Australia (35° 18' 27'' S, 149° 7' 27.9'' E).
Project description:Understanding of mechanisms of resistance of forest trees against microbial pathogens is an essential prerequisite for the development of sustainable forestry practices and for the improvement of commercially-grown trees via either conventional breeding or rational genetic engineering. We have studied the transcriptional response of Scots pine trees to Heterobasidion annosum infection under field conditions. By comparing responses of trees to wounding and to fungal inoculation we could identify a set of genes that were specifically responding to fungal infection. We have also investigated a contribution of Scots pine antimicrobial protein Sp-AMP2 to the host antimicrobial defense to evaluate the potential of Sp-AMP genes as molecular markers for resistance breeding.
Project description:Young Fagus sylvatica trees (approximately 7 to 8 years) were collected from a natural regeneration beech forest. The trees were excavated with intact soil cores, roots and top organic layer. The trees were then kept outdoors at the Department of Forest Botany, Georg-August-Universität Göttingen. Plants were protected from rain, and light conditions were matched to those of the natural stand using a shading net; otherwise, plants were exposed to natural climatic conditions. The soil moisture was regularly measured; plants were watered with deionized water as needed to keep soil moisture close to the original conditions. Trees was randomly relocated on a weekly basis throughout the experiment to avoid biasses caused by location or light effects. After 21 weeks, a treatment was applied to understand the physiological mechanisms of inorganic nitrogen uptake and assimilation under conditions of an inorganic nitrogen saturated forest simulation: Plants were fertilized with either a 20 mM solution of KNO3, a 20 mM solution of NH4Cl, or demineralized water (control) for 2 days. On the third day, the trees were harvested. Root tips were immediately shock-frozen in liquid nitrogen and used for RNA extraction.
Project description:Reforestation is effective in restoring ecosystem functions and enhancing ecosystem services of degraded land. The three most commonly employed reforestation methods of natural reforestation, artificial reforestation with native Masson pine (Pinus massoniana Lamb.), and introduced slash pine (Pinus elliottii Engelm.) plantations were equally successful in biomass yield in southern China. However, it is not known if soil ecosystem functions, such as nitrogen (N) cycling, are also successfully restored. Here, we employed a functional microarray to illustrate soil N cycling. The composition and interactions of N-cycling genes in soils varied significantly with reforestation method. Natural reforestation had more superior organization of N-cycling genes, and higher functional potential (abundance of ammonification, denitrification, assimilatory, and dissimilatory nitrate reduction to ammonium genes) in soils, providing molecular insight into the effects of reforestation.
2019-11-04 | GSE100379 | GEO
Project description:Soil microorganisms under bryophytes
| PRJNA810699 | ENA
Project description:Soil microorganisms under bryophytes
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared.