Project description:Studies of the miRNA expression profiles associated with the postnatal late growth, development and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA-seq analyses to determine the differential expression of miRNAs from skeletal muscle tissues at 1, 3, 5, and 10-year-old in sika deer. A total of 171 known miRNAs and 60 novel miRNAs were identified based on four small RNA libraries. 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 4 miRNAs were differentially expressed between adult and adolescence sika deer, and 1 miRNAs were differentially expressed between aged and adult sika deer. GO and KEGG analyses showed that miRNA were mainly related to energy and substance metabolism, processes that are closely associate with growth, development and aging of skeletal muscle. We also constructed mRNA-mRNA and miRNA-mRNA interaction networks related to growth, development and aging of skeletal muscle. The results showed that miR-133a, miR-133c, miR-192, miR-151-3p etc. may play important roles in muscle growth and development, and miR-17-5p, miR-378b, miR-199a-5p, miR-7 etc. may have key roles in muscle aging. In this study, we determined the dynamic miRNA in muscle tissue for the first time in sika deer. The age-dependent miRNAs identified will offer insights into the molecular mechanism underlying muscle development, growth and maintenance and also provide valuable information for sika deer genetic breeding.
Project description:Studies of the gene expression profiles associated with the postnatal late growth, development and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA-seq analyses to determine the differential expression of unigenes from skeletal muscle tissues at 1, 3, 5, and 10-year-old in sika deer. A total of 51716 unigenes were identified based on four mRNA libraries. 2044 unigenes were differentially expressed between adolescence and juvenile sika deer, 1946 unigenes were differentially expressed between adult and adolescence sika deer, and 2209 unigenes were differentially expressed between aged and adult sika deer. GO and KEGG analyses showed that DE unigenes were mainly related to energy and substance metabolism, processes that are closely associate with growth, development and aging of skeletal muscle. We also constructed mRNA-mRNA interaction networks related to growth, development and aging of skeletal muscle. The results showed that Myh1, Myh2, Myh7, ACTN3 etc. may play important roles in muscle growth and development, and WWP1, DEK, UCP3, FUS etc. may have key roles in muscle aging. In this study, we determined the dynamic unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth and maintenance and also provide valuable information for sika deer genetic breeding.
Project description:To elucidate the complex physiological process of the growth, development and immunity response of Sika Deer, this study evaluated the changes of miRNA profiles in the four developmental stages (juvenile, adolescence, adult and aged) of ten tissue (adrenal, antler, brain, heart, kidney, lung, liver, skeletal muscle, spleen and testes). The results showed that a total of 306 known miRNAs and 143 novel miRNAs were obtained. Many miRNAs displayed organ-specificity and age-specificity. The largest number of miRNAs were enriched in the brain, some of which were shared only between the brain and adrenal. These miRNAs were involved in maintaining specific functions within the brain and adrenal. Additionally, the adolescence-adult transition of Sika Deer was a crucial stage in its life cycle. In conclusion, our study provided abundant data support for the current research Sika Deer. It also contributes to understand the role of miRNAs play in regulating the growth, development and immunity response of Sika Deer.
Project description:we used proteomic technology to disclose the difference of antler regeneration between red deer and sika deer. Through functional analysis, we obtained differentially expressed proteins and the pathway involved in antler regeneration between two groups
Project description:Nutrition has a vital role in shaping the intestinal microbiome. The impact of nutrients and the consequences of enteral deprivation on the small intestinal mucosal microbiota, specifically in early life, has not been well described. Our aim was to study the impact of enteral deprivation on the small intestine mucosal microbiome and to search for factors that shape this interaction in early life. Host seem to be the most dominant factor in the structure of the early life mucosal microbial small intestine community. Under conditions of nutrient deprivation, there are specific changes in host proteomics. Further research is needed to better define and understand this host-microbe-nutrition interaction in the small intestine.
2024-07-16 | PXD044961 | Pride
Project description:Microbial sequencing of the rumen of the sika deer
| PRJNA852403 | ENA
Project description:Roe deer and goat fecal microbial 16SrRNA sequencing