Project description:MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle Results: Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs (miRBase v.19). Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378 and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (version 19). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle Conclusions: Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying residual feed intake in bovine
Project description:Bovine mastitis causes changes in the serum exosomal miRNAs expression. Serum samples from healthy dairy cows (n = 7) were compared to those of cows with subclinical (n = 7 ) using small RAN sequencing. Three hundred fifty-five miRNAs (341 known and 14 novel ones) were identified. There were 42 miRNAs up-regulated in serum-derived EVs from cows with subclinical mastitis, including bta-miR-1246, bta-miR-2431-3p, bta-miR-126-3p, bta-miR-29a, etc. The MAPK signaling pathway was the most affected pathway by clinical mastitis. Thus, miRNA alterations in mastitis serum-derived EVs support the potential regulator role of specific miRNAs as exosomal cargo in clinical mastitis physiology.
Project description:In this study, we determined the miRNA expression profile of bovine alveolar macrophages, using next-generation sequencing strategy. On an Illumina HiSeq 2000 machine, we sequenced 8 miRNA libraries, prepared from small RNA fractions of alveolar macrophages isolated from 8 different healthy animals (Bos taurus). From the data, the potential novel miRNAs were predicted, and the expression levels of the known miRNAs were determined. We report that 80 known bovine miRNAs are expressed in bovine alveolar macrophages with >100 reads per million. The most highly expressed miRNA was bta-miR-21, followed by bta-miR-27a. Additionally, one putatively novel bovine miRNA was identified. To our knowledge, this is the first RNA-seq study to profile miRNA expression in bovine alveolar macrophages and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type.
2013-09-09 | GSE41138 | GEO
Project description:Bta-miR-117, Bta-miR-234, and Bta-miR417 effect on transcriptome from bovine blastocysts
Project description:Purpose: The goal of this study is to explore the role of miRNAs in dairy cow response to E. coli and S. aureus, mastitis causing pathogens, is not well understood. Results: The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria (treatments: 6, 12, 24 and 48 hr) and without challenge (control: 0, 6, 12, 24 and 48 hr) was profiled using next-generation-sequencing. A total of 231 known bovine miRNAs were identified with more than 10 counts per million (CPM) in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the total reads of known bovine miRNAs. One hundred and fifty novel miRNAs were identified and half of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P<0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to one for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (Bta-miR184, miR-24-3p, miR-148, miR-486 and bta-let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG (Kyoto encyclopedia of genes and genomes) pathways of the immune system, signal transduction, cellular process, nervous system, development and pathways in human diseases, especially cancer. Conclusion: Using next-generation sequencing, our study identified 150 novel bovine miRNAs and revealed a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. E. coli elicited an earlier differential regulation of miRNAs as opposed to a delayed regulation by S. aureus. Furthermore, target gene prediction showed significant enrichments for functions in different biological and cellular processes as well as KEGG pathways in immunity, development and human diseases. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis of mastitis and development of control measures. Bovine mammary epithelial cells (MAC-T cells) challenged with heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria (treatments: 6, 12, 24 and 48 hr) and without challenge (control: 0, 6, 12, 24 and 48 hr) was profiled using next-generation-sequencing, no replicates, using illumina HiScanSQ platform.
Project description:In this study, we determined the miRNA expression profile of bovine alveolar macrophages, using next-generation sequencing strategy. On an Illumina HiSeq 2000 machine, we sequenced 8 miRNA libraries, prepared from small RNA fractions of alveolar macrophages isolated from 8 different healthy animals (Bos taurus). From the data, the potential novel miRNAs were predicted, and the expression levels of the known miRNAs were determined. We report that 80 known bovine miRNAs are expressed in bovine alveolar macrophages with >100 reads per million. The most highly expressed miRNA was bta-miR-21, followed by bta-miR-27a. Additionally, one putatively novel bovine miRNA was identified. To our knowledge, this is the first RNA-seq study to profile miRNA expression in bovine alveolar macrophages and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type. Examination of bovine alveolar macrophage miRNA profiles, using RNA-seq. Alveolar macrophages were isolated from lung lavages from 8 animals. Small RNA fractions were prepared from the cells using the Qiagen RNeasy Plus mini kit, and miRNA sequencing libraries were prepared using the Epicentre Scriptminer multiplex kit. The sequencing was performed on an Illumina HiSeq 2000 machine.
Project description:Purpose: The goal of this study is to explore the role of miRNAs in dairy cow response to E. coli and S. aureus, mastitis causing pathogens, is not well understood. Results: The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria (treatments: 6, 12, 24 and 48 hr) and without challenge (control: 0, 6, 12, 24 and 48 hr) was profiled using next-generation-sequencing. A total of 231 known bovine miRNAs were identified with more than 10 counts per million (CPM) in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the total reads of known bovine miRNAs. One hundred and fifty novel miRNAs were identified and half of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P<0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to one for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (Bta-miR184, miR-24-3p, miR-148, miR-486 and bta-let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG (Kyoto encyclopedia of genes and genomes) pathways of the immune system, signal transduction, cellular process, nervous system, development and pathways in human diseases, especially cancer. Conclusion: Using next-generation sequencing, our study identified 150 novel bovine miRNAs and revealed a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. E. coli elicited an earlier differential regulation of miRNAs as opposed to a delayed regulation by S. aureus. Furthermore, target gene prediction showed significant enrichments for functions in different biological and cellular processes as well as KEGG pathways in immunity, development and human diseases. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis of mastitis and development of control measures.
Project description:Despite buffaloes being primary farm animals, their reproductive performance remains poor mainly due to inaccurate estrus detection methods that ultimately has an economic impact on dairy industry as well as farmers. Recently, numerous studies showed potential of miRNAs as estrus biomarker. However, a miRNA profile of buffalo cell free saliva, a non-invasive fluid, at estrus and diestrus stages is missing. Hence, the present study was planned to identify differential levels of salivary cell free miRNAs in estrus as compared to the diestrus phase of buffalo oestrous cycle (n=3) in order to discover a possible estrus specific miRNAs as biomarkers. miRNA-Seq data analysis showed that in total 10 miRNAs i.e bta-miR-375, bta-miR-200c, bta-miR-30d, bta-let-7f, bta-miR-200a, bta-miR-12034, bta-let-7b, bta-miR-142-5p, bta-miR-2467-3p, bta-miR-30a-5p are significantly altered (log2foldchange >3 and p<0.05) during estrus in comparison to the diestrus phase in buffaloes, suggesting their estrus biomarker potential. Overall, 8 miRNAs i.e bta-miR-375 (6.87 Fold; p-value 0.003), bta-miR-200c (5.98 Fold; p-value 0.003), bta-miR-30d (4.17 Fold; p-value 0.015), bta-let-7f (3.34 Fold; p-value 0.022), bta-miR-200a (4.92 Fold; p-value 0.024), bta-miR-12034 (3.58 Fold; p-value 0.0025), bta-let-7b (3.06 Fold; p-value 0.031), bta-miR-30a-5p (4.7 Fold; p-value 0.036) were upregulated, whereas bta-miR-142-5p (-3.4 Fold; p-value 0.032) and bta-miR-2467-3p (-5.24 Fold; p-value 0.035) were downregulated during estrus. However, further validation study using qPCR is required in a large sample size in order to determine their estrus biomarker potential. In summary, our results revealed differential salivary cell free miRNAs profile during the oestrous cycle that may lead to the development of estrus specific miRNAs based point-of-care test applicable for the reproductive management of buffaloes in the field condition in the near future.
Project description:The current study aimed to investigate whether bovine non-coding RNA play a role in regulating E. coli O157 shedding through studying miRNAomes of the whole gastrointestinal tract including duodenum, proximal jejunum, distal jejunum, cecum, spiral colon, descending colon and rectum. The number of miRNAs detected in each intestinal region ranged from 390 ± 13 to 413 ± 49. Compared between SS and NS, the number of differentially expressed (DE) miRNAs ranged from one to eight, and through the whole gut, seven miRNAs were up-regulated and seven were down-regulated in SS. The distal jejunum and rectum were the regions where the most DE miRNAs were identified (8 and 7, respectively). Functional analysis indicated that the bta-miR-378b, bta-miR-2284j and bta-miR-2284d which were down-regulated in both distal jejunum and rectum of SS, the bta-miR-2887 which was down-regulated in rectum of SS, as well as the bta-miR-211 and bta-miR-29d-3p which were up-regulated in rectum of SS were potentially regulatory to host immune functions, including hematological system development and immune cell trafficking. Our findings suggest that the alternation of miRNA expression in the gut of SS may lead to differential regulation in immune functions involved in E. coli O157 super-shedding in cattle.
Project description:The current study aimed to investigate whether bovine non-coding RNA play a role in regulating E. coli O157 shedding through studying miRNAomes of the whole gastrointestinal tract including duodenum, proximal jejunum, distal jejunum, cecum, spiral colon, descending colon and rectum. The number of miRNAs detected in each intestinal region ranged from 390 ± 13 to 413 ± 49. Compared between SS and NS, the number of differentially expressed (DE) miRNAs ranged from one to eight, and through the whole gut, seven miRNAs were up-regulated and seven were down-regulated in SS. The distal jejunum and rectum were the regions where the most DE miRNAs were identified (8 and 7, respectively). Functional analysis indicated that the bta-miR-378b, bta-miR-2284j and bta-miR-2284d which were down-regulated in both distal jejunum and rectum of SS, the bta-miR-2887 which was down-regulated in rectum of SS, as well as the bta-miR-211 and bta-miR-29d-3p which were up-regulated in rectum of SS were potentially regulatory to host immune functions, including hematological system development and immune cell trafficking. Our findings suggest that the alternation of miRNA expression in the gut of SS may lead to differential regulation in immune functions involved in E. coli O157 super-shedding in cattle.