Project description:Salmonella enterica serovar Typhimurium ST313 is a relatively newly emerged sequence type that is causing a devastating epidemic of bloodstream infections across sub-Saharan Africa. Analysis of hundreds of Salmonella genomes has revealed that ST313 is closely-related to the ST19 group of S. Typhimurium that cause gastroenteritis across the world. The core genomes of ST313 and ST19 vary by just 1000 single-nucleotide polymorphisms (SNPs). We hypothesised that the phenotypic differences that distinguish African Salmonella from ST19 are caused by certain SNPs that directly modulate the transcription of virulence genes. Here we identified 3,597 transcriptional start sites (TSS) of the ST313 strain D23580, and searched for a gene expression signature linked to pathogenesis of Salmonella. We identified a SNP in the promoter of the pgtE gene that caused high expression of the PgtE virulence factor in African S. Typhimurium, increased the degradation of the factor B component of human complement, contributed to serum resistance and modulated virulence in the chicken infection model. We propose that high levels of expression PgtE of by African S. Typhimurium ST313 promotes bacterial survival and bacterial dissemination during human infection. Our finding of a functional role for an extra-genic SNP shows that approaches used to deduce the evolution of virulence in bacterial pathogens should include a focus on non-coding regions of the genome.
Project description:Cappable-seq was used to map transcription start sites globally in Salmonella Typhimurium SL1344. In addition to naturally occurring plasmids pSLT and pCol1B9, the cells carry derivatives of plasmid pAMNF, or pAMNM, that drive low level constitutive expression of epitope tagged MarA, SoxS, Rob or RamA derivatives.
Project description:InvF ChIP-chip on Salmonella enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged InvF (IP samples) and wildtype strain (mock IP samples) Salmonella enterica serovar Typhimurium causes a range of diseases from self-limiting gastroenteritis to life-threatening systemic infections. Its complex infection process is initiated by the invasion of the intestinal epithelial monolayer by means of a type three secretion system. InvF is one of the key regulators governing the invasion of epithelial cells. By mapping the InvF regulon, i.e. locating its direct target genes, the gene network underlying invasion can be further examined, including identifying possible new effector-encoding genes. In order to map the InvF regulon, we performed chromatin immunoprecipitation combined with tiling microarray analysis (ChIP-chip) and compared expression of the identified target genes in an invF mutant and a wildtype strain. In addition, the promoter regions of these target genes were searched for the presence of an InvF recognition site. Finally, a query-driven biclustering method, combined with a microarray compendium containing publically available S. Typhimurium gene expression data, was applied as an in silico validation technique for functional relatedness between newly identified target genes and known invasion genes. As expected, under invasion inducing conditions, InvF activates the expression of invasion chaperone encoding sicA and the effector-encoding genes sopB, sopE, sopE2 and sopA by binding their promoter region. Newly identified InvF targets are steB, encoding a secreted effector, and STM1239. The presence of an InvF recognition site in the promoter regions of these target genes further supports this observation. In addition, the query-driven biclustering method revealed similarities in expression profiles between STM1239 and known InvF regulated invasion genes over a range of experimental conditions. In conclusion, we here deliver the first evidence for direct binding of InvF to the promoter regions of sopA and sopE2, and associate genes encoding a secreted effector (steB) and a putative novel effector (STM1239) with the Salmonella invasion regulator InvF. Three IP samples (from three biological replicates using anti-Myc antibody against Salmonella Typhimurium SL1344 strain encoding chromosomally 9Myc-tagged InvF) and three control mock IP samples (from three biological replicates using anti-Myc antibody against Salmonella Typhimurium SL1344 wildtype strain) were labeled with Cy5 and hybridized against a common genomic DNA reference, labeled with Cy3, on 6 S. Typhimurium LT2 whole genome tiling arrays
Project description:Cappable-seq was used to map transcription start sites globally in Salmonella Typhimurium SL1344. In addition to naturally occurring plasmids pSLT and pCol1B9, the cells carry plasmid pAMNF. The latter can be used for low level constitutive expression of a transcription factor of interest, though in these experiments no such ectopic transcription factor expression was used.
Project description:ChIP-on-chip analysis of RNAP and RpoD binding to the Salmonella enterica serovar Typhimurium chromosome demonstrated a high degree of overlap between RNAP and RpoD binding and provided us with important insights into the global distribution of these factors. Furthermore this data was correlated with information on the location of 1873 transcription start sites identified by RNA-Seq technology, thereby providing a detailed transcriptional map of Salmonella Typhimurium.
Project description:Raghunathan2009 - Genome-scale metabolic
network of Salmonella typhimurium (iRR1083)
This model is described in the article:
Constraint-based analysis of
metabolic capacity of Salmonella typhimurium during
host-pathogen interaction.
Raghunathan A, Reed J, Shin S,
Palsson B, Daefler S.
BMC Syst Biol 2009; 3: 38
Abstract:
BACKGROUND: Infections with Salmonella cause significant
morbidity and mortality worldwide. Replication of Salmonella
typhimurium inside its host cell is a model system for studying
the pathogenesis of intracellular bacterial infections.
Genome-scale modeling of bacterial metabolic networks provides
a powerful tool to identify and analyze pathways required for
successful intracellular replication during host-pathogen
interaction. RESULTS: We have developed and validated a
genome-scale metabolic network of Salmonella typhimurium LT2
(iRR1083). This model accounts for 1,083 genes that encode
proteins catalyzing 1,087 unique metabolic and transport
reactions in the bacterium. We employed flux balance analysis
and in silico gene essentiality analysis to investigate growth
under a wide range of conditions that mimic in vitro and host
cell environments. Gene expression profiling of S. typhimurium
isolated from macrophage cell lines was used to constrain the
model to predict metabolic pathways that are likely to be
operational during infection. CONCLUSION: Our analysis suggests
that there is a robust minimal set of metabolic pathways that
is required for successful replication of Salmonella inside the
host cell. This model also serves as platform for the
integration of high-throughput data. Its computational power
allows identification of networked metabolic pathways and
generation of hypotheses about metabolism during infection,
which might be used for the rational design of novel
antibiotics or vaccine strains.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180058.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Longitudinal analysis of Salmonella typhimurium mRNA from superspeader mouse cecal content and stool compared to in vitro Salmonella typhimurium mRNA.
Project description:OmpR is a DNA binding protein belonging to the OmpR/EnvZ two component system. This system is known to sense changes in osmolarity in Escherichia coli. Recently, OmpR in Salmonella enterica serovar Typhimurium was found to be activated by acidic pH and DNA relaxation. In this study, ChIP-on-chip was employed to ascertain the genome-wide distribution of OmpR in Salmonella Typhimurium and Escherichia coli in acidic and neutral pH. In addition we investigated the affect of DNA relaxation on OmpR binding in Salmonella Typhimurium.