Project description:Mitochondrial damage is a hallmark of metabolic diseases, including diabetes and metabolic dysfunction-associated steatotic liver disease, yet the consequences of impaired mitochondria in metabolic tissues are often unclear. Here, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity across multiple metabolic tissues. Surprisingly, we demonstrate that defects in the mitochondrial quality control machinery, which we observe in pancreatic β cells of humans with diabetes, cause reductions of β cell mass due to dedifferentiation, rather than apoptosis. Utilizing transcriptomic profiling, lineage tracing, and assessments of chromatin accessibility, we find that targeted deficiency anywhere in the mitochondrial quality control pathway (e.g., genome integrity, dynamics, or turnover) activate the mitochondrial integrated stress response and promote cellular immaturity in β cells, hepatocytes, and brown adipocytes. Intriguingly, pharmacologic blockade of mitochondrial retrograde signaling in vivo restores β cell mass and identity to ameliorate hyperglycemia following mitochondrial damage. Thus, we observe that a shared mitochondrial retrograde response controls cellular identity across metabolic tissues and may be a promising target to treat or prevent metabolic disorders.
Project description:Defects in mitochondrial oxidative phosphorylation complexes, altered bioenergetics and metabolic shift are often seen in cancers. Here we show a role for the dysfunction of electron transport chain component, cytochrome c oxidase (CcO) in cancer progression. We show that genetic silencing of the CcO complex by shRNA expression and loss of CcO activity in multiple cell types from the mouse and human sources resulted in metabolic shift to glycolysis, loss of anchorage dependent growth and acquired invasive phenotypes. Disruption of CcO complex caused loss of transmembrane potential and induction of Ca2+/Calcineurin-mediated retrograde signaling. Propagation of this signaling, includes activation of PI3-kinase, IGF1R and Akt, Ca2+ sensitive transcription factors and also, TGF1, MMP16, periostin that are involved in oncogenic progression. Whole genome expression analysis showed up regulation of genes involved in cell signaling, extracellular matrix interactions, cell morphogenesis, cell motility and migration. The transcription profiles reveal extensive similarity to retrograde signaling initiated by partial mtDNA depletion, though distinct differences are observed in signaling induced by CcO dysfunction. The possible CcO dysfunction as a biomarker for cancer progression was supported by data showing that esophageal tumors from human patients show reduced CcO subunits IVi1 and Vb in regions that were previously shown to be hypoxic core of the tumors. Our results show that mitochondrial electron transport chain defect initiates a retrograde signaling. These results suggest that a defect in CcO complex can potentially induce tumor progression. Total RNA from control and CcO IVi1 silenced cells was extract. Three independent samples were generated for control and silenced, respectively.
Project description:Mitochondrial fusion and fission proteins regulate mitochondrial quality control and mitochondrial metabolism. In turn, mitochondrial dysfunction is associated with aging, although its causes are still under debate. Here, we show that aging is characterized by a progressive reduction of Mitofusin 2 (Mfn2) in mouse skeletal muscle and that skeletal muscle Mfn2 ablation in mice generates a gene signature linked to aging. Furthermore, muscle Mfn2-deficient mice show unhealthy aging characterized by altered metabolic homeostasis and sarcopenia. Mfn2 deficiency impairs mitochondrial quality control, which contributes to an exacerbated age-related mitochondrial dysfunction. Surprisingly, aging-induced Mfn2 deficiency triggers a ROS-dependent retrograde signaling pathway through induction of HIF1 transcription factor and BNIP3. This pathway ameliorates mitochondrial autophagy and minimizes mitochondrial damage. Our findings reveal that repression of Mfn2 in skeletal muscle during aging is determinant for the loss of mitochondrial quality, contributing to age-associated metabolic alterations and loss of muscle fitness. Quadriceps muscle from four mice per genotype were used (Control young (6 month-old), Mfn2KO young (6-month-old), control old (22-month-old) and Mfn2KO old (22-month-old)
Project description:The Ccr4-Not complex is an effector of multiple signaling pathways controlling gene transcription and mRNA turnover. Herein, we provide evidence that Ccr4-Not also activates nutrient signaling through the essential target of rapamycin complex 1 (TORC1) pathway. Mechanistically, Ccr4-Not loss decreases TORC1 signaling due to reduced stability of the vacuole V-ATPase that is required to activate TORC1 when associated with the Gtr1 GTPase containing EGO complex. Expressing a constitutively active Gtr1 in Ccr4-Not deficient cells bypasses the requirement for the V-ATPase and restores TORC1 signaling. Transcriptome analysis reveals that Ccr4-Not loss activates TORC1 repressed retrograde signaling to remodel metabolism and enhance mitochondrial function. Blocking retrograde signaling in a Ccr4-Not mutant further reduces TORC1 signaling, thus suggesting the enhanced mitochondrial metabolism due to Ccr4-Not loss is a metabolic adaptive response required to sustain TORC1 activity. Therefore, Ccr4-Not is a critical activator of TORC1 signaling that regulates cellular metabolism.
Project description:As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a key transcriptional activator of nuclear-encoded mitochondrial genes in mammals. GPS2 regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of the nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and in brown adipose tissue from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA Polymerase II (POL2) activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an unexpected layer of regulation of mitochondrial gene transcription, uncover a novel direct mitochondria-nuclear communication pathway and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.
Project description:Mitochondria are crucial for plant viability and are able to communicate information on their functional status to the cellular nucleus via retrograde signalling, thereby affecting gene expression. It is currently unclear if retrograde signalling in response to constitutive mitochondrial biogenesis defects is mediated by the same pathways as those triggered during acute mitochondrial dysfunction. Furthermore, it is unknown if retrograde signalling can effectively improve plant performance when mitochondrial function is constitutively impaired. Here we show that retrograde signalling in mutants defective in mitochondrial proteins RNA polymerase rpotmp or prohibitin atphb3 can be suppressed by knocking out the transcription factor ANAC017. Genome-wide RNA-seq expression analysis revealed that ANAC017 is almost solely responsible for the most dramatic transcriptional changes common to rpotmp and atphb3 mutants, regulating both classical marker genes such as alternative oxidase 1a (AOX1a) and also previously-uncharacterised DUF295 genes that appear to be new retrograde markers. In contrast, ANAC017 does not regulate intra-mitochondrial gene expression or transcriptional changes unique to either rpotmp or atphb3 genotype, suggesting the existence of currently unknown signalling cascades. The data show that the role of ANAC017 extends beyond common retrograde transcriptional responses and affects downstream protein abundance and enzyme activity of alternative oxidase, as well as steady state energy metabolism in atphb3 plants. Furthermore, detailed growth analysis revealed that ANAC017-dependent retrograde signalling provides benefits for growth and productivity in plants with mitochondrial defects. In conclusion, ANAC017 plays a key role in both biogenic and operational mitochondrial retrograde signalling, and improves plant performance when mitochondrial function is constitutively impaired.
Project description:Defects in mitochondrial oxidative phosphorylation complexes, altered bioenergetics and metabolic shift are often seen in cancers. Here we show a role for the dysfunction of electron transport chain component, cytochrome c oxidase (CcO) in cancer progression. We show that genetic silencing of the CcO complex by shRNA expression and loss of CcO activity in multiple cell types from the mouse and human sources resulted in metabolic shift to glycolysis, loss of anchorage dependent growth and acquired invasive phenotypes. Disruption of CcO complex caused loss of transmembrane potential and induction of Ca2+/Calcineurin-mediated retrograde signaling. Propagation of this signaling, includes activation of PI3-kinase, IGF1R and Akt, Ca2+ sensitive transcription factors and also, TGF1, MMP16, periostin that are involved in oncogenic progression. Whole genome expression analysis showed up regulation of genes involved in cell signaling, extracellular matrix interactions, cell morphogenesis, cell motility and migration. The transcription profiles reveal extensive similarity to retrograde signaling initiated by partial mtDNA depletion, though distinct differences are observed in signaling induced by CcO dysfunction. The possible CcO dysfunction as a biomarker for cancer progression was supported by data showing that esophageal tumors from human patients show reduced CcO subunits IVi1 and Vb in regions that were previously shown to be hypoxic core of the tumors. Our results show that mitochondrial electron transport chain defect initiates a retrograde signaling. These results suggest that a defect in CcO complex can potentially induce tumor progression.