Project description:Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.
Project description:Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.
Project description:Xenium platform was used for the spatial transcriptomic analysis of human DRG neurons, 100 marker genes were selected as the customized probe panel and hybridized to fresh frozen hDRG sections. Manual segmentation of each neuron soma was performed, based on expressions of pan-neuronal marker gene PGP9.5, satellite glia cell marker FAB7B, and the corresponding H.E. staining. In total, 1340 neurons were identified (excluding 75 region-of-interest with poor or unclear neuronal soma morphology in H & E staining) and clustered into 16 groups. The 16 clusters were assigned as different cell types based on marker genes expression.
Project description:Spatial transcriptomics workflows using barcoded capture arrays are commonly used for resolving gene expression in tissues. However, existing techniques are either limited by capture array density or are cost prohibitive for large scale atlasing. We present Nova-ST, a dense nano-patterned spatial transcriptomics technique derived from randomly barcoded Illumina sequencing flow cells. Nova-ST enables customized, low cost, flexible, and high-resolution spatial profiling of large tissue sections. Benchmarking on mouse brain sections demonstrates significantly higher sensitivity compared to existing methods, at reduced cost.
Project description:We developed a method that utilizes floating mounting of thin sections of fixed frozen mouse lung tissue onto Xenium slides for the fluorescent in situ hybridization (FISH) and imaging–based spatial transcriptomics analysis of gene expression using the Xenium platform provided by 10X Genomics. Spatial transcriptomics techniques provide a comprehensive view by merging gene expression data with spatial context within their native tissue architecture. However, the Xenium pipeline has been validated only for formalin-fixed paraffin-embedded (FFPE) and fresh frozen sections by 10X Genomics. Notably, many researchers prefer paraformaldehyde-fixed cryosections for immunohistochemistry and in situ hybridization. In our study, we assessed the compatibility of standard fixed frozen mouse lung sections with the Xenium protocol. Our findings reveal that these sections not only align well with the Xenium platform but also offer superb imaging and gene expression quantification, even with limited number of genes in the Xenium panel. This protocol can serve as a valuable resource for preparing various tissues where FFPE and fresh frozen samples present challenges.