Project description:BACKGROUND: MYBPC3 is one of the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms of how mutations in MYBPC3 lead to the onset and progression of HCM are poorly understood. Thus, advancing in-vitro studies to define these mechanisms of mutations leading to HCM are still warranted. Thus, the primary objective of this study was to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with MYBPC3 mutation utilizing isogenic human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs).
Project description:This study utilized TMT to characterize the cardiac proteomic differences between patients with hypertrophic cardiomyopathy and controls.
Project description:We hope to determine the importance of different genes (including B receptors) in anthracycline-induced cardiomyopathy. This has important benefits to patients exposed to anthracyclines, as this could help determine whether certain individuals have increased susceptibility to cardiac injury.
Project description:Succinate dehydrogenase, which is known as mitochondrial complex II, has proven to be a fascinating machinery, attracting renewed and increased interest in its involvement in human diseases. Herein, we find that succinate dehydrogenase assembly factor 4 (SDHAF4) is downregulated in cardiac muscle in response to pathological stresses and in diseased hearts from human patients. Cardiac loss of Sdhaf4 suppresses complex II assembly and results in subunit degradation and complex II deficiency in fetal mice. These defects are exacerbated in young adults with globally impaired metabolic capacity and activation of dynamin-related protein 1, which induces excess mitochondrial fission and mitophagy, thereby causing progressive dilated cardiomyopathy and lethal heart failure in animals. Targeting mitochondria via supplementation with fumarate or inhibiting mitochondrial fission improves mitochondrial dynamics, partially restores cardiac function and prolongs the lifespan of mutant mice. Moreover, the addition of fumarate is found to dramatically improve cardiac function in myocardial infarction mice. These findings reveal a vital role for complex II assembly in the development of dilated cardiomyopathy and provide additional insights into therapeutic interventions for heart diseases.
Project description:Cardiac metabolism is deranged in heart failure, but underlying mechanisms remain unclear. Lysine demethylase 8 (Kdm8) represses gene expression in the embryo and controls metabolism in cancer. However, its function in cardiac homeostasis is unknown. We show that Kdm8 maintains a mitochondrial gene network active by repressing Tbx15 to prevent dilated cardiomyopathy leading to lethal heart failure. Deletion of Kdm8 in mouse cardiomyocytes increased H3K36me2 with activation of Tbx15 and repression of target genes in the NAD+ pathway before dilated cardiomyopathy initiates. Moreover, NAD+ supplementation prevented dilated cardiomyopathy in Kdm8 mutant mice and TBX15 overexpression blunted NAD+-activated cardiomyocyte respiration. Furthermore, KDM8 was downregulated in human hearts affected by dilated cardiomyopathy and higher TBX15 expression defines a subgroup of affected hearts with the strongest downregulation of genes encoding mitochondrial proteins. Thus, KDM8 represses TBX15 to maintain cardiac metabolism. Our results suggest that epigenetic dysregulation of metabolic gene networks initiates myocardium deterioration towards heart failure and could underlie heterogeneity of dilated cardiomyopathy.
Project description:Pathogenic mutations in alpha kinase 3 (ALPK3) cause cardiomyopathy and a range of musculoskeletal defects. How ALPK3 mutations result in disease remains unclear and little is known about this atypical kinase. Using a suite of engineered human pluripotent stem cells (hPSCs) we show that ALPK3 localizes to the sarcomere, specifically at the M-Band. Both sarcomeric organization and calcium kinetics were disrupted in ALPK3 deficient hPSC derived cardiomyocytes. Further, cardiac organoids derived from ALPK3 knockout hPSCs displayed reduced force generation. Phosphoproteomic profiling of wildtype and ALPK3 null hPSC derived cardiomyocytes revealed ALPK3-dependant phospho-peptides were enriched for proteins involved in sarcomere function and protein quality control. We demonstrate that ALPK3 binds to the selective autophagy receptor SQSTM1 (Sequestome 1) and is required for the sarcomeric localization of SQSTM1. We propose that ALPK3 is a myogenic kinase with an integral role in the intracellular signaling networks underlying sarcomere maintenance required for continued cardiac contractility.