Project description:Gene expression profiling reveals anti-inflammatory effects of BBEE on lipopolysaccharide (LPS)-induced Human neuronal SH-SY5Y cells We evaluated the pretreatment effect of BBEE on LPS-induced inflammation in SH-SY5Y cells. Pretreatment with BBEE could significantly attenuate nitric oxide (NO) production and LPS-induced release of inflammatory mediators in SH-SY5Ycells.
Project description:Gene expression profiling reveals potential effects of Oleacein in promoting neurogenesis and mitigating neuroinflammation in SH-SY5Y cells under normal and lipopolysaccharide (LPS)-induced conditions. We evaluated the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response in vitro using human neuroblastoma cells (SH-SY5Y cells).
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Keywords: Cell type comparison, time course
Project description:Transcriptional profiling of human SH-SY5Y neuroblastoma cells comparing DMSO-treated control cells with those treated with 50 microM clioquinol (CQ) for 24 h.
Project description:Neuroblastoma cells SH-SY5Y undergoes a morphology change upon retinoic acid (RA) treatment, the neurite outgrowth characteristic in undividing cells is accompanied by cell cycle arrest and neuronal markers expression, controlled by a precise dynamic molecular circuits. Depletion of CSB in SH-SY5Y cells leads to differentiation defects. This study examines the temporal gene expression profile during differentiation. Using Nimblegen microarray we characterized the gene expression profiles before and after RA treatment in both wild type and CSB-KD SH-SY5Y cells, and we identified the difference in gene expression between wild type and CSB-KD cells underlying the differentiation defects induced by CSB depletion.
Project description:Human SH-SY5Y neuroblastoma cells treated with paraquat, a neurotoxic herbicide which both catalyzes the formation of reactive oxygen species (ROS) and induces mitochondrial damage in animal models was profiled using Affimetrix Exon 1.0 ST GeneChips® Human SH-SY5Y neuroblastoma cells was compared with respect to Human SH-SY5Y neuroblastoma cells treated with Paraquat. Parqaut treatment was done as described by Maracchioni, A., Totaro, A., Angelini, D.F., Di Penta, A., Bernardi, G., Carri, M.T., and Achsel, T. (2007) J Neurochem 100, 142-153
Project description:H3K27me3 ChIP-seq was performed on: 1) untreated SH-SY5Y human neuroblastoma cells (day 0) 2) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment - day 7) 3) vincristine-treated SH-SY5Y human neuroblastoma cells (7 days of treatment + 7 days of recover - day 14)
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Experiment Overall Design: Human neuroblastomas, SK-N-SH (HTB-11) and SH-SY5Y-A cells (CRL-2266) were obtained from the American Type Culture Collection (ATCC). We also obtained SH-SY5Y-E cells (EC94030304) from the European Collection of Cell Cultures (ECACC). Tissue culture cells were maintained in D-MEM/F12 1:1 mixture supplemented with 15% FBS (Fetal Bovine Serum) and 1% NEAA (Non-essential amino acid) in a 5% CO2 humidified incubator at 37oC. The culture medium was changed twice a week. For the RA-inducible experiment, random culture cells from two clone subtypes of SH-SY5Y and SK-N-SH were seeded in laminin coated culture dishes (BioCoat Laminin Cellware; BD Biosciences, Billerica, MA, USA) for 1 day and then transferred to a medium containing 10 μM of RA in the presence or the absence of LY294002 (10μM) for five days. For BDNF-induced sequential differentiation of the SH-SY5Y-E strain, cells were washed with D-MEM/F12 twice after five days in the presence of RA and then incubated with 50 ng/ml of BDNF in D-MEM/F12 without serum for three days.