Project description:Comparison of transcriptomes from bark, developing xylem and xylem of P. radiata saplings exposed to 0 or 1mg of Ethephon in lanolin for 1 or 8 weeks We developed an oligonucleotide microarray using sequences (mostly from Pinus taeda) from public sequence databases. These sequences were reconstituted into a non-redundant database by CAP3 assembly and used as templates for automated design of 60-mer oligonucleotide probes through eArray, Agilent’s online facility. The microarray slides, manufactured by Agilent, were used to monitor gene expression in an Ethephon-induction experiment. Ethephon was dispersed in lanolin paste and applied in a 3 cm band near the base of the stem of 2-year old Pinus radiata saplings. RNA was extracted from bark, cambial region, also known as “developing xylem”, and xylem tissues exposed for 1 or 8 weeks to Ethephon. The transcriptomes from these extracts were compared by hybridization onto the All-Pinus microarray slides. Statistically significant differentially expressed genes identified by limma (Linear Models for Microarray Data) were subsequently analysed by singular enrichment analysis through the Database for Annotation, Visualization and Integrated Discovery (DAVID) portal. Results revealed that bark, cambial region and xylem generate mostly mutually exclusive cohorts of genes and Gene Ontology (GO) classes. Ethephon induction led to the upregulation of xylem genes related to the metabolism of phenylpropanoids and flavonoids and to defence responses, specifically, fungal/insect attack and oxidative stress. Independent validation of the microarray data for five genes was obtained by quantitative RT-PCR. The results are also interpreted in reference to gross and microscopic morphological changes. These results confirm the utility of the All-Pinus microarray for transcriptomic research in P. radiata.
Project description:Comparison of transcriptomes from bark, developing xylem and xylem of P. radiata saplings exposed to 0 or 1mg of Ethephon in lanolin for 1 or 8 weeks We developed an oligonucleotide microarray using sequences (mostly from Pinus taeda) from public sequence databases. These sequences were reconstituted into a non-redundant database by CAP3 assembly and used as templates for automated design of 60-mer oligonucleotide probes through eArray, AgilentM-bM-^@M-^Ys online facility. The microarray slides, manufactured by Agilent, were used to monitor gene expression in an Ethephon-induction experiment. Ethephon was dispersed in lanolin paste and applied in a 3 cm band near the base of the stem of 2-year old Pinus radiata saplings. RNA was extracted from bark, cambial region, also known as M-bM-^@M-^\developing xylemM-bM-^@M-^], and xylem tissues exposed for 1 or 8 weeks to Ethephon. The transcriptomes from these extracts were compared by hybridization onto the All-Pinus microarray slides. Statistically significant differentially expressed genes identified by limma (Linear Models for Microarray Data) were subsequently analysed by singular enrichment analysis through the Database for Annotation, Visualization and Integrated Discovery (DAVID) portal. Results revealed that bark, cambial region and xylem generate mostly mutually exclusive cohorts of genes and Gene Ontology (GO) classes. Ethephon induction led to the upregulation of xylem genes related to the metabolism of phenylpropanoids and flavonoids and to defence responses, specifically, fungal/insect attack and oxidative stress. Independent validation of the microarray data for five genes was obtained by quantitative RT-PCR. The results are also interpreted in reference to gross and microscopic morphological changes. These results confirm the utility of the All-Pinus microarray for transcriptomic research in P. radiata. Series of 2-color, 2 condition experiments in 12 180k arrays. Main comparison is within tissues exposed to 0 [control] or 1 mg Ethephon. 2nd level of comparison is between tissues [bark, xylem scraping, xylem]. Third level of comparison is between time [1 or 8 week exposure]. One slide is hybridized with cRNA generated from control and treated tissues with the same duration of exposure to Ethephon. Two biological replicates [each biological rep is a 2 y old cutting propagated clone] for treated plants whilst control consists of RNA pooled, in equal proportions [estimated by UV absorbance], from 2 untreated biological replicates.]. Dyes used for each sample are indicated in sample description.
Project description:Developing xylem from strong and mild compression wood of Pinus radiata were harvested and Golgi membranes enriched by density centrifugation. Enriched membranes were further purified by free-flow electrophoresis. A total of 3 fractions were collected (from each tissue) and analyzed by tandem mass spectromtery.
Project description:Sirex noctilio F., a Eurasian horntail woodwasp recently introduced into North America, oviposits in pines and other conifers and in the process spreads a phytopathogenic fungus that serves as a food source for its larvae. During oviposition the woodwasp also deposits a mucus produced in its acid (venom) gland that alters pine defense responses and facilitates infection by the fungus. A 26,496-feature loblolly pine cDNA microarray was used to survey gene expression of pine tissue responding to S. noctilio venom. Six genes were selected for further assessment by qRT-PCR, including one that encoded an apparent PR-4 protein and another that encoded a thaumatin-like protein. Expression of both was strongly induced in response to venom, while expression of an apparent actin gene (ACT1) was stable in response to the venom. The pattern of gene response was similar in Pinus taeda L. and P. radiata D. Don, but the magnitude of response in P. radiata was significantly stronger for each of the induced genes. The magnitude of biomarker gene response to venom also varied according to genotype within these two species. The qRT-PCR assay was used to demonstrate that the primary bioactive component in S. noctilio venom is a polypeptide. Reference design. Two condition experiment, two time points each compared to a common reference. Two biological replicates, two technical replicates, 12 slides total, duplicate/re-scanned images submitted for each slide.
Project description:<p><em>Pinus radiata</em> seedlings, the most widely planted pine species in the world, were exposed to temperatures within a range mimicking future scenarios based on current models of heat increase. The short-term heat response in <em>P. radiata</em> was studied in detail by exploring the metabolome, proteome and targeted transcriptome. The use of complementary mass spectrometry techniques, GC-MS and LC-Orbitrap-MS, together with novel bioinformatics tools allowed the reliable quantification of 2075 metabolites and 901 protein groups. Integrative analyses of different functional levels and plant physiological status revealed a complex molecular interaction network of positive and negative correlations between proteins and metabolites involved in short-term heat response, including three main physiological functions as: 1) A hormone subnetwork, where fatty acids, flavonoids and hormones presented a key role; 2) An oxidoreductase subnetwork, including several dehydrogenase and peroxidase proteins; and 3) A heat shock protein subnetwork, with numerous proteins that contain a HSP20 domain, all of which were overexpressed at the transcriptional level. Integrated analysis pinpointed the basic mechanisms underlying the short-term physiological reaction of <em>P. radiata</em> during heat response. This approach was feasible in forest species and unmasked two novel candidate biomarkers of heat resistance, PHO1 and TRANSCRIPTION FACTOR APFI, and a MITOCHONDRIAL SMALL HEAT SHOCK PROTEIN, for use in future breeding programs.</p><p><br></p><p><strong>Data availability:</strong></p><p>The proteomics data have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier <a href='https://www.ebi.ac.uk/pride/archive/projects/PXD032754' rel='noopener noreferrer' target='_blank'>PXD032754</a>.</p>