Project description:Here we provide dataset from a proteomic experiment, using trypsin digestion, and reversed-phase chromatography (RPC) with tandem mass spectrometr (RPC-MS/MS), in order to relatively quantify the protein composition of skin mucus of Prussian carp Carassius gibelio. The main aim of the project is to identify the proteins specifically assotiated with fish inhabits euthophic shallow lakes lake Chany Lake (West Siberia).
2021-05-27 | PXD025974 | Pride
Project description:Glacial influence affect modularity in bacterial community structure in three deep Andean North- Patagonian lakes
Project description:The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to increase atmospheric deposition of contaminants in these high elevation locations. Total mercury and 28 organochlorine compounds were measured in composite, whole fish samples collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in fish from all lakes sampled and ranged in concentration from 17 to 262 ug/kg wet weight. Only two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were detected in fish tissues (concentrations <25 ug/kg wet weight). No organochlorines were detected in sediments (MRL ≈1-5 ug/kg), while median total and methyl mercury in sediments were 30.4 and 0.34 ug/kg (dry weight), respectively. Using a targeted rainbow trout cDNA microarray with known genes, we detected significant differences in liver transcriptional responses, including metabolic, endocrine, and immune-related genes, in fish collected from a contaminated lake compared to a lake with a lower contaminant load. Overall, our results suggest that local urban areas are contributing to the observed contaminant patterns, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. Keywords: High altitude lakes, mercury, salmonids, organochlorines