Project description:Sustainable agriculture requires locally adapted varieties that produce nutritious food with limited agricultural inputs. Genome engineering represents a viable approach to develop cultivars that fulfill these criteria. For example, the red Hassawi rice, a native landrace of Saudi Arabia, tolerates local drought and high-salinity conditions and produces grain with diverse health-promoting phytochemicals. However, Hassawi has a long growth cycle, high cultivation costs, low productivity, and susceptibility to lodging. Here, to improve these undesirable traits via genome editing, we established efficient regeneration and Agrobacterium-mediated transformation protocols for Hassawi. In addition, we generated the first high-quality reference genome and targeted the key flowering repressor gene, Hd4, thus shortening the plant's lifecycle and height. Using CRISPR/Cas9 multiplexing, we simultaneously disrupted negative regulators of flowering time (Hd2, Hd4, and Hd5), grain size (GS3), grain number (GN1a), and plant height (Sd1). The resulting homozygous mutant lines flowered extremely early (∼56 days) and had shorter stems (approximately 107 cm), longer grains (by 5.1%), and more grains per plant (by 50.2%), thereby enhancing overall productivity. Furthermore, the awns of grains were 86.4% shorter compared to unedited plants. Moreover, the modified rice grain displayed improved nutritional attributes. As a result, the modified Hassawi rice combines several desirable traits that can incentivize large-scale cultivation and reduce malnutrition.
Project description:Virus-mediated expression of CRISPR/Cas9 has been actively used for genome editing in animal models of genetic disorders, including neurological diseases, but the consequences of overexpressing bacterial Cas9 in the mammalian brain remain unknown. Through RNA-seq analysis, we found that virus-mediated expression of Cas9 caused systematic changes in genes involved in neuronal functions. We also generated a short-lived version of Cas9, which maintains its genome editing capacity, but significantly alleviates neurotoxicity caused by overexpressed Cas9. Thus, modification of Cas9 by shortening its half-life would help develop CRISPR/Cas9-based therapeutic approaches for treating genetic neurological disorders.
Project description:we developed an in vivo CRISPR-Cas9 genome editing system that targets tumor-associated macrophages (TAMs) via bacterial protoplast-derived nanovesicles (NVs) decorated with a pH-responsive PEG conjugated polymer and galactosamine-conjugated ligand
Project description:CRISPR-Cas systems have been developed as important tools for plant genome engineering. Here, we demonstrate that the hypercompact CasΦ nuclease is able to generate stably inherited gene edits in Arabidopsis, and that CasΦ guide RNAs can be expressed with either the Pol-III U6 promoter or a Pol-II promoter together with ribozyme mediated RNA processing. Using the Arabidopsis fwa epiallele we show that CasΦ displays higher editing efficiency when the target locus is not DNA methylated, suggesting that CasΦ is sensitive to chromatin environment. Importantly, two CasΦ protein variants, vCasΦ and nCasΦ, both showed much higher editing efficiency relative to the wildtype CasΦ enzyme, and yielded more offspring plants with inherited edits. Extensive genomic analysis of gene edited plants showed no off-target editing, suggesting that CasΦ is highly specific. The hypercompact size, flexible PAM and wide range of working temperatures make CasΦ an excellent addition to existing plant genome editing systems.
Project description:CRISPRs and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR-Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted a comprehensive genome-wide investigation of off-target mutations using either a CRISPR-Cas9 or a TALEN strategy. We observed a similar number of SNVs and InDels for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and that the PEG treatment in itself was probably the main source of mutations found in the edited plants.
Project description:A genome-wide CRISPR screen was combined with a tdTomato reporter-based epigenetic memory assay to identify factors that erase epigenetic memory in ESC. After introducing genome wide perturbation and dCas9::KRAB-mediated epigenetic editing of the Esg1-tdTomato reporter, the trigger was released and cells that maintained the silencing sorted at FACS. Samples were collected out of sorted tdTomato negative (TOMminus) and positive (TOMplus) cells after 6 days of DOX treatment (epigenetic editing) and 3 or 7 days of DOX washout (release of the trigger), using a gating strategy to separate the bottom 2.5% negative cells (2.5%gate) and cells ranging from mildly to fully repressed (widegate).
Project description:Purpose: RNA editing by ADAR1 is essential for hematopoietic development. The goals of this study were firstly, to identify ADAR1-specific RNA-editing sites by indentifying A-to-I (G) RNA editing sites in wild type mice that were not edited or reduced in editing frequency in ADAR1 deficient murine erythroid cells. Secondly, to determine the transcription consequence of an absence of ADAR1-mediated A-to-I editing. Methods: Total RNA from E14.5 fetal liver of embryos with an erythroid restricted deletion of ADAR1 (KO) and littermate controls (WT), in duplicate. cDNA libraries were prepared and RNA sequenced using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript level with TopHat followed by Cufflinks. qRTâPCR validation was performed using SYBR Green assays. A-to-I (G) RNA editing sites were identified as previously described by Ramaswami G. et al., Nature Methods, 2012 using BurrowsâWheeler Aligner (BWA) followed by ANOVA (ANOVA). RNA editing sites were confirmed by Sanger sequencing. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 14,484 transcripts in the fetal livers of WT and ADAR1E861A mice with BWA. RNA-seq data had a goodness of fit (R2) of >0.7, p<0.0001 between biological duplicates per genotype. Clusters of hyper-editing were onserved in long, unannotated 3'UTRs of erythroid specific transcripts. A profound upregulation of interferon stimulated genes were found to be massively upregulated (up to 5 log2FC) in KO fetal liver compared to WT. 11.332 (6,894 novel) A-to-I RNA editing sites were identified when assessing mismatches in RNA-seq data. Conclusions: Our study represents the first detailed analysis of erythroid transcriptomes and A-to-I RNA editing sites, with biologic replicates, generated by RNA-seq technology. A-to-I RNA editing is the essential function of ADAR1 and is required to prevent sensing of endogenous transcripts, likely via a RIG-I like receptor mediated axis. Fetal liver mRNA profiles of E14.5 wild type (WT) and ADAR Epor-Cre knock out mice were generated by deep sequencing, in duplicate using Illumina HiSeq 2000.