Project description:Under current models for signal-dependent transcription in eukaryotes, DNA-binding activator proteins regulate the recruitment of RNA polymerase II (Pol II) to a set of target promoters. Yet, recent studies, as well as our results herein, show that Pol II is widely distributed (i.e., "preloaded") at the promoters of many genes prior to specific signaling events. How Pol II recruitment and Pol II preloading fit within a unified model of gene regulation is unclear. In addition, the mechanisms through which cellular signals activate preloaded Pol II across mammalian genomes remain largely unknown. Here we show that the predominant genomic outcome of estrogen signaling is the post-recruitment regulation of Pol II activity through phosphorylation, rather than recruitment of Pol II. Furthermore, we show that negative elongation factor (NELF) binds to estrogen target promoters in conjunction with preloaded Pol II and represses gene expression until the appropriate signal is received. Finally, our studies reveal that the estrogen-dependent activation of preloaded Pol II facilitates rapid transcriptional and post-transcriptional responses which play important physiological roles in regulating estrogen signaling itself. Our results reveal a broad use of post-recruitment Pol II regulation by the estrogen signaling pathway, a mode of regulation that is likely to apply to a wide variety of signal-regulated pathways. ChIP-chip analysis for RNA Pol II, Ser5 phosphorylated RNA Pol II and NELF-A in MCF7 breast cancer cells.
Project description:Under current models for signal-dependent transcription in eukaryotes, DNA-binding activator proteins regulate the recruitment of RNA polymerase II (Pol II) to a set of target promoters. Yet, recent studies, as well as our results herein, show that Pol II is widely distributed (i.e., "preloaded") at the promoters of many genes prior to specific signaling events. How Pol II recruitment and Pol II preloading fit within a unified model of gene regulation is unclear. In addition, the mechanisms through which cellular signals activate preloaded Pol II across mammalian genomes remain largely unknown. Here we show that the predominant genomic outcome of estrogen signaling is the post-recruitment regulation of Pol II activity through phosphorylation, rather than recruitment of Pol II. Furthermore, we show that negative elongation factor (NELF) binds to estrogen target promoters in conjunction with preloaded Pol II and represses gene expression until the appropriate signal is received. Finally, our studies reveal that the estrogen-dependent activation of preloaded Pol II facilitates rapid transcriptional and post-transcriptional responses which play important physiological roles in regulating estrogen signaling itself. Our results reveal a broad use of post-recruitment Pol II regulation by the estrogen signaling pathway, a mode of regulation that is likely to apply to a wide variety of signal-regulated pathways.
Project description:RNA Polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes such as small nuclear RNA (snRNA) genes is not understood at the structural level. Here we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol II preinitiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE) located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc called wing-1 and wing-2 bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters.
Project description:To explore the global mechanisms of estrogen-regulated transcription, we used chromatin immunoprecipitation coupled with DNA microarrays to determine the localization of RNA polymerase II (Pol II), estrogen receptor alpha (ERalpha), steroid receptor coactivator proteins (SRC), and acetylated histones H3/H4 (AcH) at estrogen-regulated promoters in MCF-7 cells with or without estradiol (E2) treatment. In addition, we correlated factor occupancy with gene expression and the presence of transcription factor binding elements. Using this integrative approach, we defined a set of 58 direct E2 target genes based on E2-regulated Pol II occupancy and classified their promoters based on factor binding, histone modification, and transcriptional output. Many of these direct E2 target genes exhibit interesting modes of regulation and biological activities, some of which may be relevant to the onset and proliferation of breast cancers. Our studies indicate that about one-third of these direct E2 target genes contain promoter-proximal ERalpha-binding sites, which is considerably more than previous estimates. Some of these genes represent possible novel targets for regulation through the ERalpha/AP-1 tethering pathway. Our studies have also revealed several previously uncharacterized global features of E2-regulated gene expression, including strong positive correlations between Pol II occupancy and AcH levels, as well as between the E2-dependent recruitment of ERalpha and SRC at the promoters of E2-stimulated genes. Furthermore, our studies have revealed new mechanistic insights into E2-regulated gene expression, including the absence of SRC binding at E2-repressed genes and the presence of constitutively bound, promoter-proximally paused Pol IIs at some E2-regulated promoters. These mechanistic insights are likely to be relevant for understanding gene regulation by a wide variety of nuclear receptors. Keywords: MCF7 cells, E2, Estrogen, RNA, ER, RNA Polymerase II, SRC, Acetylated histones, ChIP-chip
Project description:The dosage-dependent recruitment of RNA polymerase II (Pol II) at the promoters of genes related to neurodevelopment and stem cell maintenance is required for transcription by the fine-tuned expression of SET-domain-containing protein 5 (SETD5). Pol II O-GlcNAcylation by O-GlcNAc transferase (OGT) is critical for preinitiation complex formation and transcription cycling. SETD5 dysregulation has been linked to stem cell-like properties in some cancer types; however, the role of SETD5 in cancer cell stemness has not yet been determined. We here show that aberrant SETD5 overexpression induces stemness in colorectal cancer (CRC) cells. SETD5 overexpression causes the upregulation of PI3K-AKT pathway-related genes and cancer stem cell (CSC) markers such as CD133, Kruppel-like factor 4 (KLF4), and estrogen-related receptor beta (ESRRB), leading to the gain of stem cell-like phenotypes. Our findings also revealed a functional relationship between SETD5, OGT, and Pol II. OGT-catalyzed Pol II glycosylation depends on SETD5, and the SETD5-Pol II interaction weakens in OGT-depleted cells, suggesting a SETD5-OGT-Pol II interdependence. SETD5 deficiency reduces Pol II occupancy at PI3K-AKT pathway-related genes and CD133 promoters, suggesting a role for SETD5-mediated Pol II recruitment in gene regulation. Moreover, the SETD5 depletion nullified the SETD5-induced stemness of CRC cells and Pol II O-GlcNAcylation. These findings support the hypothesis that SETD5 mediates OGT-catalyzed O-GlcNAcylation of RNA Pol II, which is involved in cancer cell stemness gain via CSC marker gene upregulation.
Project description:Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.
Project description:Most metazoan promoters have RNA polymerase II (Pol II) paused slightly downstream of the transcription start site by NELF and DSIF. This pausing keeps these promoters available for rapid induction by P-TEFb, whose activity causes NELF to dissociate and Pol II and DSIF to elongate on the gene. ChIP-Seq data was generated for Pol II, NELF, and DSIF in HeLa cells and used to look at pausing downstream of unannotated promoters. 3x ChIP-Seq (Pol II, NELF, DSIF) in HeLa cells
Project description:Most metazoan promoters have RNA polymerase II (Pol II) paused slightly downstream of the transcription start site by NELF and DSIF. This pausing keeps these promoters available for rapid induction by P-TEFb, whose activity causes NELF to dissociate and Pol II and DSIF to elongate on the gene. ChIP-Seq data was generated for Pol II, NELF, and DSIF in HeLa cells and used to look at pausing downstream of unannotated promoters.
Project description:Abstract Background: Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair has been described to quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. However, the precise mechanism by which RNA polymerase II (Pol II) transcription is affected following UV irradiation during the repair processes genome-wide is not well understood. Results: We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We find that about 90% of the promoters of expressed genes show reduced Pol II occupancy 2-4 hours following UVB irradiation, and that the presence of Pol II is restored to “normal”, or higher, levels 5-6 hours after irradiation. We also identified a smaller set of genes, where the presence of Pol II at the promoter regions does not decrease after UVB irradiation, but often increases throughout the entire transcription units. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH but not TBP follows the behavior of Pol II suggesting that at these genes TFIIH may be sequestered for DNA repair upon UVB treatment. Conclusions: Thus, our study reveals a global negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed genes following sublethal UVB irradiation, and a small subset of genes (including regulators of repair, cell growth and survival), where Pol II escapes this negative regulation. Following genome-wide RNA Polymerase II redistribution over time upon UVB irradiation
Project description:Understanding the precise functions and relationship of BRD2 with other bromodomain and extraterminal motif (BET) proteins is central for the application of BET-specific and pan inhibitors. Here, we used acute protein degradation and quantitative genomic and proteomic approaches to investigate the primary functions of BRD2 in transcription. We report that BRD2 is required for TAF3-mediated Pol II initiation at low levels of H3K4me3-modified promoters and Pol II elongation by suppressing R-loops. Single and double depletion revealed that BRD2 and BRD3, but not BRD4, redundantly and independently function in Pol II transcription at different promoters and cooperatively occupy enhancers. Interestingly, we found that depletion of BRD2 affects the expression of different genes during differentiation processes, priming with promoter regulation in ES cells. Therefore, our results suggest complex interconnections between BRD2 and BRD3 at promoters to fine-tune Pol II initiation and elongation for control of cell state.