Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression in Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on whole mycorrhizal roots. We used GeneChips to detail the global programme of gene expression in response to colonization by arbuscular mycorrhizal fungi and in response to a treatment with phosphate and identified genes differentially expressed during this process. Medicago truncatula roots were harvested at 28 days post inoculation with the two different arbuscular mycorrhizal fungi Glomus intraradices (Gi-Myc) and Glomus mosseae (Gm-Myc) under low phosphate conditions (20 µM phosphate) or after a 28 days treatment with 2 mM phosphate in the absence of arbuscular mycorrhizal fungi (2mM-P). As a control, uninfected roots grown under low phosphate conditions (20 µM phosphate) were used (20miM-P). Three biological replicates consisting of pools of five roots were used for RNA extraction and hybridization on Affymetrix GeneChips.
Project description:To investigate the involvement of arbuscular mycorrhizal symbiosis in the moleular regulation in foxtail millet roots and the effects of genetic variation on AMS-mediated molecular regulation, we isolated total RNA from the roots of 3 different landraces for comprehensive transcriptomic analysis. We then performed gene expression profiling analysis using data obtained from RNA-seq of 3 different landraces (Hanevalval, TT8, ICE36) after 6-week mock or arbuscular mycorrhizal fungi treatments.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression in Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on whole mycorrhizal roots. We used GeneChips to detail the global programme of gene expression in response to colonization by arbuscular mycorrhizal fungi and in response to a treatment with phosphate and identified genes differentially expressed during this process.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on mycorrhizal root fragments enriched for early fungal infection stages. We used Medicago GeneChips to detail the global programme of gene expression in response to early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these early stages.
Project description:Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes. sixty-three samples were collected from four elevations (3200,3400,3600 and 3800 m) along a Tibetan alpine meadow; Three replicates in each treatment