Project description:Mesophotic coral reefs have been proposed as refugia for corals, providing shelter and larval propagules for shallow-water reefs that are disproportionately challenged by global climate change and local anthropogenic stressors. Yet, knowledge of the capacity of coral larvae to adjust to different depth environments is still limited. In this study, planulae of the reef-building coral Stylophora pistillata from 5-8 and 40-44 m depth in the Gulf of Aqaba were tested in a long-term in situ translocation experiment for their ability to settle and acclimate to reciprocal depth conditions. We assessed survival rates, photochemical, physiological and morphological characteristics, as well as gene expression variations in juveniles grown at different depths, comparing them to non-translocated adults, juveniles and planulae. We found high mortality rates among mesophotic-origin planulae, irrespective of translocation depth. Gene expression patterns suggested that deep planulae lacked settlement competency and experienced increased developmental stress upon release. Symbiont photochemical acclimation to depth occurred rapidly within 8 days, with symbiont populations showing changes in photochemical traits but no symbiont species shuffling between deep and shallow juveniles. In contrast, coral host physiological and morphological acclimation were less evident. We observed minimal overlap in gene expression patterns between different life stages and depths, indicating that gene expression significantly depends on life stage. The study also identified a set of DEGs associated with initial stress responses following translocation, lingering stress response, and environmental effects of depth. In conclusion, though our data reveal rapid symbiont acclimation, host acclimation to match deep coral phenotypes was incomplete within 60 days for planulae translocated to different depths. These results have implications for understanding the ecological significance of mesophotic reefs as potential larval sources in the face of environmental stressors.
Project description:Florida’s coral reefs are currently experiencing a multi-year disease-related mortality event, that has resulted in massive die-offs in multiple coral species. Coral monitoring data and disease prevention/treatment efforts from recent years have identified individual Orbicella faveolata that possess high, moderate, or low resistance to stony coral tissue loss disease (SCTLD). Ninety samples of high, moderate, or low SCTLD resistance were collected from 3 reefs for bottom-up LC-MS/MS analysis (n=30 for each resistance category).
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:The prokaryotic and eukaryotic microbial communities associated with coral reefs have highly host specificity in the South China Sea
| PRJNA844482 | ENA
Project description:16S Metagenomics Analysis of Microbial Communities Associated with Marine Tunicates from Coral Reefs in Pulau Bidong, South China Sea