Project description:Supplementation of Ampelopsis Grossedentata extract contributes to the improvement of intestinal health in swine
| PRJNA1131186 | ENA
Project description:Effects of dietary L-theanine on growth performance, antioxidation, meat quality and intestinal microflora in White Feather Broilers with acute oxidative stress
| PRJNA814510 | ENA
Project description:Gut metagenome of white feather broilers
Project description:Background: High concentrations of atmospheric ammonia are one of the key environmental stressors affecting broiler production performance, which causes remarkable economic losses as well as potential welfare problems of the broiler industry. Previous reports have demonstrated that high levels of ammonia can alter body fat distribution and meat quality of broilers. However, the molecular mechanisms and metabolic pathways in breast muscle altered by high concentrations of ambient ammonia exposure on broilers are still unknown. Results: This study utilized RNA-Seq to compare the transcriptomes of breast muscles to identify differentially enriched genes in broilers exposed to high or low concentrations of atmospheric ammonia. A total of 267 promising candidate genes were identified by differential expression analysis, among which 67 genes were up-regulated and 189 genes were down-regulated. Bioinformatics analysis suggested that the up and down-regulated genes were involved in the following two categories of cellular pathways and metabolisms: Steroid biosynthesis (gga00100) and peroxisome proliferator-activated receptor (PPAR) signaling pathway (gga03320), which both participate in the lipid metabolism processes. Conclusions: This study suggests that longtime exposure to high concentrations of aerial ammonia can change fat content in breast muscle, meat quality and palatability via altering expression levels of genes participating in important lipid metabolism pathways. This study maybe provides new information that could be used for genetic breeding and nutritional intervention in production practice of broilers industry in the future.
Project description:Abstract: Ammonia is one of the most prominent air pollutants in poultry houses. High levels of ammonia have adverse effects on respiratory health, growth performance, meat production of broilers, and breast meat growth and yield are critical important in the broiler industry. To date, studies focus on the negative relationship of ammonia exposure and breast muscle tissue are still very limited, and the underlying molecular mechanisms remain poorly understood. In this study, high concentrations of atmospheric ammonia were found to lower slaughter rate and broiler breast meat yield significantly (P < 0.05). To explore the candidate genes that ammonia regulates breast meat yield of broilers, high throughout RNA-Seq was used to compare the transcriptome of breast muscle with different ammonia exposure (50 ppm vs 3 ppm). In total, 129 differentially expressed genes (DEGs) were identified (P-value < 0.05; fold-change ≥ 2), among which 87 genes were significantly down-regulated and 42 were up-regulated. Bioinformatics analysis suggested that DEGs (such as PDK4, ACSL1, GLUL, FBXO32) were involved in fatty acid degradation/metabolism, nitrogen metabolism, PPAR signaling and adipocytokine signaling pathways. Functional annotation showed that DEGs were mainly enriched in reactive oxygen species metabolic process and muscle contraction. It can be concluded that decreased meat yield was due to the DEGs participating in above biological processes and pathways. This study provides novel insights into transcriptional differences in breast meat between high- and low-ammonia exposed broiler chickens.
Project description:This study was performed to determine the effects of dietary fat sources, i.e., beef tallow, soybean oil, olive oil and coconut oil (each 3% in feed), on the growth performance, meat quality and gene expression in growing-finishing pigs. The results of this study indicate that the type of dietary fat affects fatty acid composition and insulin signaling-related gene expression in the longissimus dorsi muscle of pigs. Effects of dietary fat types on meat quantity, meat quality and gene expression in pig.
Project description:The genetic foundation of chicken tail feather color is not very well studied to date, though that of body feather color is extensively explored. In the present study, we used a synthetic chicken dwarf line (DW), which was originated from the hybrids between a black tail chicken breed, Rhode Island Red (RIR) and a white tail breed, Dwarf Layer (DL), to understand the genetic rules of the white/black tail color. The DW line still contain the individuals with black or white tails, even if the body feather are predominantly red, after more than ten generation of self-crossing and being selected for the body feather color. We firstly performed four crosses using the DW line chickens including black tail male to female, reciprocal crosses between the black and white, and white male to female to elucidate the inheritance pattern of the white/black tail. We found that (i) the white/black tail feather colors are independent of body feather color and (ii) the phenotype are autosomal simple trait and (iii) the white are dominant to the black in the DW lines. Furtherly, we performed a genome-wide association (GWA) analysis to determine the candidate genomic regions underlying the tail feather color by using black tail chickens from the RIR and DW chickens and white individuals from DW lines.