Project description:We generated a collection of 13 plasmids, with each plasmid containing a variant of a CRISPR protospacer targeted by spacer 8 of the E. coli CRISPR-I array. We transformed the plasmids as a pool into delta cas3 E. coli cells expressing all other cas genes constitutively. We then transformed these cells with either an empty vector or a plasmid expressing the Cas3 nuclease. DNA surrounding the protospacers was PCR-amplified and sequenced.
Project description:Our results show that compared to wild type, a deletion mutant of the cas3 gene, an essential nuclease part of the class 1 type I CRISPR-Cas system, increases the virulence of P gingivalis.
Project description:The type V-I CRISPR-Cas system is becoming increasingly attractive for its potential utility in gene editing. However, natural nucleases often exhibit low efficiency, limiting their application. Here, we utilized structure-guided rational design and combinatorial protein engineering to optimize an uncharacterized Cas12i nuclease, Cas12i3. Accordingly, we developed Cas-SF01, a Cas12i3 variant that exhibits significantly improved gene-editing activity in mammalian cells and plants. Cas-SF01 displays comparable or superior editing performance compared to SpCas9 or recently engineered Cas12 nucleases. Further analysis of PAM recognition showed that Cas-SF01 has an expanded PAM range and effectively recognizes NTTN and noncanonical NATN and TTVN PAMs. Additionally, we identified an amino acid substitution, D876R, that markedly reduced the off-target effect while maintaining high on-target activity, leading to the development of Cas-SF01HiFi (high-fidelity Cas-SF01). Finally, we demonstrated that Cas-SF01 has robust gene-editing activity in both the monocot plant rice and dicot plant pepper. Our results suggest that Cas-SF01 can serve as a robust gene-editing platform with high efficiency and specificity for future genome editing applications across different organisms.
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.
Project description:Base editors are RNA-guided deaminases that enable site-specific nucleotide transitions. The targeting scope of these Cas-deaminase fusion proteins critically depends on the availability of a protospacer adjacent motif (PAM) at the selected genomic locus, and is limited to a window within the CRISPR-Cas R-loop where single stranded (ss)DNA is accessible to the deaminase. Here, we reason that the Cas9-HNH nuclease domain sterically constrains ssDNA accessibility, and demonstrate that omission of this domain expands the editing window. By exchanging the HNH nuclease domain with an adenosine deaminase, we furthermore engineer adenine base editor variants (HNHx-ABE) with PAM-proximally shifted editing windows. HNHx-ABEs are substantially reduced in size, and expand the targeting scope of base editors. Our finding that the HNH domain is replaceable could moreover benefit future protein engineering efforts, where Cas9 operates together with other enzyme domains.
Project description:New, orthogonal transcription factors in eukaryotic cells have been realized by engineering nuclease-deficient CRISPR-associated proteins and/or their guide RNAs. In this work, we present a new kind of orthogonal activators, in Saccharomyces cerevisiae, made by turning type V CRISPR RNA into a scaffold RNA (ScRNA) able to recruit a variable number of VP64 activation domains. The activator arises from the complex between the synthetic ScRNA and DNase-deficient type V Cas proteins: dCas12e and denAsCas12a. The transcription activation achieved via the newly engineered dCas:ScRNA system is up to 4.7-fold higher than that obtained with the direct fusion of VP64 to Cas proteins. The new transcription factors have been proven to be functional in circuits such as Boolean gates, converters, multiplex-gene and metabolic-pathway activation. Our results extend the CRISPR-Cas-based technology with a new effective tool that only demands RNA engineering and improves the current design of transcription factors based on type V Cas proteins.