Project description:Identify shifts in gene expression relevant to torpor phenotypes and recovery following torpor in five tissues of the 13-lined ground squirrel. Sampled tissues and time points overlap with prior hibernation RNA-seq studies in 13-lined ground squirrel and other species, allowing for the analysis of conserved gene expression patterns in torpor.
Project description:Hibernation is a seasonally adaptive strategy that allows hibernators to live through extreme cold condition and was viewed as a highly regulated physiological event. In spite of the profound reduction of blood flow to retina, hibernation causes no lasting retinal injury and hibernators show increased tolerance to ischemic insults during hibernation period. To understand the molecular changes of retina in response to hibernation we applied transcriptomic analysis to explore the changes of gene expression of 13-lined ground squirrel retinas during hibernation.
Project description:Hibernating mammals undergo a dramatic drop in temperature and blood flow during torpor and must suppress hemostasis to avoid stasis blood clotting. In addition, cold storage of most mammalian platelets induces cold storage lesions, resulting in rapid clearance following transfusion. 13-lined ground squirrels (Ictidomys tridecemlineatus) provide a model to study hemostasis and cold storage of platelets during hibernation because, even with a body temperature of 4-8C, their platelets are resistant to cold storage lesions. We quantified and systematically compared proteomes of platelets collected from ground squirrels at summer (activity), fall (entrance), and winter (topor) to elucidate how molecular-level changes in platelets may support hemostatic adaptations in torpor. Platelets were isolated from squirrel blood collected in June, October, and January. Platelet lysates from each animal were digested with trypsin prior to 11-plex tandem mass tag (TMT) labeling, followed by LC-MS/MS analysis for relative protein quantification. We found over 700 platelet proteins with significant changes over the course of entrance, torpor, and activity – including systems of proteins regulating translation, platelet degranulation, metabolism, complement, and coagulation cascades. We also noted species specific differences in hemostatic, secretory, and inflammatory regulators in ground squirrel platelets relative to human platelets. In addition to providing the first ever proteomic characterization of platelets from hibernating animals, our results support a model whereby systematic changes in metabolic, hemostatic, and other proteins support physiological adaptations in torpor. In addition, our results could translate into better methods to cold store human platelets, increasing their supply and quality for transfusions.
Project description:To explore the cold resistant feature of ground squirrel neuron cells, we compared transcriptomes of human and ground squirrel iPSC derived neurons in the response to cold treatment. We identified several key pathways that are critical for the maintenance of neuronal microtubule cytoskeleton integrity at low temperature.