Project description:Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske Iron-Sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined and glucose utilization increased. Simultaneously, they underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA-seq revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.
Project description:Inducing cardiac myocytes to proliferate is considered a potential therapy to target heart disease, however, modulating cardiac myocyte proliferation has proven to be a technical challenge. The Hippo pathway is a kinase signaling cascade that regulates cell proliferation during the growth of the heart. Inhibition of the Hippo pathway increases the activation of the transcription factors YAP/TAZ, which translocate to the nucleus and upregulate transcription of pro-proliferative genes. The Hippo pathway regulates the proliferation of cancer cells, pluripotent stem cells, and epithelial cells through a cell-cell contact-dependent manner, however, it is unclear if cell density-dependent cell proliferation is a consistent feature in cardiac myocytes. Here, we used cultured human iPSC-derived cardiac myocytes (hiCMs) as a model system to investigate this concept. hiCMs have a comparable transcriptome to the immature cardiac myocytes that proliferate during heart development in vivo. Our data indicate that a dense syncytium of hiCMs can regain cell cycle activity and YAP expression and activity when plated sparsely or when density is reduced through wounding. We found that combining two small molecules, XMU-MP-1 and S1P, increased YAP activity and further enhanced proliferation of low-density hiCMs. Importantly, these compounds had no effect on hiCMs within a dense syncytium. These data add to a growing body of literature that link Hippo pathway regulation with cardiac myocyte proliferation and demonstrate that regulation is restricted to cells with reduced contact inhibition.
Project description:Title: Changes in gene expression affected by H2O2 in cardiac myocytes.<br/> Description: We aim to identify the changes in gene expression in response to <br/> oxidative stress in rat neonatal ventricular myocytes.<br/> Oxidative stress will be induced by dosing neonatal ventricular myocyte<br/> cultures with 0.2, 0.1 and 0.04mM hydrogen peroxide at 2, 4 and 8 hr time<br/> points using unstimulated myocytes as control.
Project description:Transgenic mice with cardiac-restricted overexpression of connective tissue growth factor (CTGF) have substantially increased tolerance towards ischemia/reperfusion injury. In the transgenic mouse model, we found that CTGF induces expression of severeal genes putatively involved in cardioprotection. The purpose of this study was to determine gene expression in cardiac myocytes stimulated with purified, recombinant CTGF, comparing unstimulated and stimulated samples. The cytoprotective actions of CTGF was recflected in the transcriptome of CTGF-stimulated cardiac myocytes. Gene ontology analysis revealed that genes included under the terms anti-apoptosis, response to wounding, and response to stress were significantly overrepresented in cardiac myocytes exposed to CTGF. Serveral of the most higly up-regulated genes have previously been reported to exert cardioprotective actions and increase tolerance towards ischemia/reperfusion injury. Primary, adult cardiac myocytes were cultured in the absence (n=6) or presence (n=6) of 200 nmol/L recombinant CTGF for 48 hours.
Project description:Trypanosoma cruzi infection is a major cause of cardiomyopathy. Gene profiling studies of hearts from infected mice have revealed prominent changes in gene expression within many functional pathways. This variety of transcriptomic changes in infected mice raises the question of whether gene expression alterations in whole hearts are due to changes in infected cardiac myocytes or other cells or even to systemic effects of the infection on the heart. We employed microarrays to examine infected cardiac myocyte cultures 48 hr post-infection. Statistical comparison of gene expression levels of 2,258 well annotated unigenes in four independent cultures of infected and uninfected myocytes detected (p < 0.05) significant > 1.5 absolute fold changes in 221 (8.8%) of the sampled genes. Major categories of affected genes included those involved in immune response, extracellular matrix and cell adhesion. While changes in extracellular matrix and cell adhesion genes were anticipated, modulation of immune response genes in the infected myocytes was surprising. These findings on infected cardiac myocytes in culture reveal that altered gene expression described in the heart in Chagas disease are the consequence of both direct infection of the myocytes and resulting from presence of other cell types in the myocardium and systemic effects of infection. Transcriptomic alteration in neonatal mouse cultured cardiomyocytes induced by the parasite T.cruzi were detected by profiling and compared using AECOM mouse 32k oligonucleotide arrays hybridized in the "multiple yellow" strategy described in Iacobas et al, Biochem Biophys Res Commun. 2006 349(1):329-38.
Project description:We report gene expression changes after knockdown of transcription factors in human iPSC-derived cardiac myocytes. In prior experiments we showed that transcription factors known to be important for cardiac development were frequently up-regulated (i.e., "responsive") after small molecule perturbations of cultured iPSC-derived cardiac myocytes. We used RNA sequencing to test whether siRNA-mediated knockdown of transcription factors with different perturbation-responsiveness and tissue-specificity profiles would lead to inappropriate up-regulation of non-myocyte gene sets in cardiac myocytes.
Project description:Trypanosoma cruzi infection is a major cause of cardiomyopathy. Gene profiling studies of hearts from infected mice have revealed prominent changes in gene expression within many functional pathways. This variety of transcriptomic changes in infected mice raises the question of whether gene expression alterations in whole hearts are due to changes in infected cardiac myocytes or other cells or even to systemic effects of the infection on the heart. We employed microarrays to examine infected cardiac myocyte cultures 48 hr post-infection. Statistical comparison of gene expression levels of 2,258 well annotated unigenes in four independent cultures of infected and uninfected myocytes detected (p < 0.05) significant > 1.5 absolute fold changes in 221 (8.8%) of the sampled genes. Major categories of affected genes included those involved in immune response, extracellular matrix and cell adhesion. While changes in extracellular matrix and cell adhesion genes were anticipated, modulation of immune response genes in the infected myocytes was surprising. These findings on infected cardiac myocytes in culture reveal that altered gene expression described in the heart in Chagas disease are the consequence of both direct infection of the myocytes and resulting from presence of other cell types in the myocardium and systemic effects of infection.