Project description:Populations of engineered metabolite-producing microorganisms are prone to evolutionary production declines during industrial-scale cultivations. In this study, we develop a synthetic product addiction system in E coli that addicts mevalonic acid production cells to mevalonic acid. Through experimentally simuluated long-term fermentation, we investigate how product-addicted organisms remain stable and avoid formation of genetic subpopulations of fit, non-producing cells.
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions. 36 dsrAB clones for chip evaluation, 33 hybridizations of labeled dsrAB RNA from environmental peatsoil samples
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions.
Project description:LGG exposure of C. elegans protects C. elegans against pathogen infection and prolongs lifespan. In particular, it prolongs lifespan by up-regulating specific genes to pathogenic microorganisms. We used microarrays to elucidate miRNA expression to determine how LGG exposure in C. elegans affected miRNAs and identified miRNAs that were significantly regulated in this process.