Project description:Profiling of genetically matched normal adjacent tissue, primary tumor and metastatic lymph-node to identify cancer and metastasis genes.
Project description:Secreted extracellular vesicles are known to influence the tumor microenvironment and promote metastasis. In this work, we have analyzed the involvement of extracellular vesicles in establishing the lymph node pre-metastatic niche by melanoma cells. We found that small extracellular vesicles (sEVs) derived from highly metastatic melanoma cell lines spread broadly through the lymphatic system and are taken up by lymphatic endothelial cells reinforcing lymph node metastasis. Melanoma-derived sEVs induce lymphangiogenesis, a hallmark of pre-metastatic niche formation, in vitro and in lymphoreporter mice in vivo. Analysis of involved factors demonstrated that the neural growth factor receptor (NGFR) is secreted in melanoma-derived small extracellular vesicles and shuttled to lymphatic endothelial cells inducing lymphangiogenesis and tumor cell adhesion through the activation of ERK and NF-B pathways and ICAM1 expression. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased melanoma lymph node metastasis and extended mice survival. Importantly, analysis of NGFR expression in lymph node metastases and matched primary tumors shows that levels of MITF+NGFR+ lymph node metastatic cells are correlated with disease outcome. Our data support that NGFR is secreted in sEVs favoring lymph node pre-metastatic niche formation and lymph node metastasis in melanoma.
Project description:Secreted extracellular vesicles are known to influence the tumor microenvironment and promote metastasis. In this work, we have analyzed the involvement of extracellular vesicles in the establishment of lymph node pre-metastatic niches by melanoma cells. We found that small extracellular vesicles (sEVs) derived from highly metastatic melanoma cell lines spread broadly through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Melanoma-derived sEVs induce lymphangiogenesis, a hallmark of pre-metastatic niche formation, in vitro and in lymphoreporter mice in vivo. We found that neural growth factor receptor (NGFR) is secreted in melanoma-derived small extracellular vesicles and shuttled to lymphatic endothelial cells, inducing lymphangiogenesis and tumor cell adhesion through the activation of ERK and NF-B pathways and ICAM1 expression. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased melanoma lymph node metastasis and extended the survival. Importantly, analysis of NGFR expression in lymph node metastases and matched primary tumors shows that levels of MITF+NGFR+ lymph node metastatic cells are correlated with disease outcome. Our data support the idea that NGFR secreted in sEVs favors lymph node pre-metastatic niche formation and lymph node metastasis in melanoma
Project description:The project analyzed 88 breast cancer clinical samples, including lymph node negative and positive primary tumors, lymph node metastases, and healthy tissue as control. All samples were combined with a super-SILAC mix that served as an internal standard for quantification.
Project description:The project analyzed 88 breast cancer clinical samples, including lymph node negative and positive primary tumors, lymph node metastases, and healthy tissue as control. All samples were combined with a super-SILAC mix that served as an internal standard for quantification.
Project description:To identify the lymph node (LN) metastasis-associated genes in primary ESCC tumors, gene expression profiling assay (GEP) was performed to identify the differences in gene expression profiles between primary ESCC tumors that were with LN metastases (N+) and those without LN metastases (N-).
Project description:Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells. We used microarrays to characterise the molecular profiles of endothelial cells from lymph nodes draining metastatic (VEGF-D-overexpressing) and non-metastatic tumors, and to identify differentially-expressed genes that might have therapeutic or prognostic potential. Draining lymph nodes of metastatic (VEGF-D-overexpressing) or non-metastatic tumors were pooled from 1-5 mice and enzymatically digested. Lymph nodes draining metastatic tumors were included for the analysis only if macroscopically enlarged, indicating the presence of metastatic cells. After digestion, tumor cells and leukocytes were depleted via immunomagnetic selection, and the resulting lymph node stromal cells were cultured briefly. Podoplanin was then used as a positive immunomagnetic selection marker to enrich for lymphatic and other endothelial cells in the lymph node. RNA was isolated from biological duplicate lymph node endothelial cell (LN EC) preparations and analysed by microarray.
Project description:In this study, we conducted a proteomics analysis on 109 fresh-frozen lymph node samples from clinical patients, covering a comprehensive suite of lymphoma subtypes including B-NHL, T-NHL, HL, Lymphadenitis, Tumor metastatic lymph node (TLN), and Non-neoplastic lymph node (TNM: N0).
Project description:Current prognostic factors are insufficient for precise risk-discrimination in breast cancer patients with low grade breast tumors, which, in disagreement with theoretical prognosis, occasionally form early lymph node metastasis. To identify markers for this group of patients, we employed iTRAQ-2DLC-MS/MS proteomics to 24 lymph node positive and 24 lymph node negative grade 1 luminal A primary breast tumors. Another group of 48 high-grade tumors (luminal B, triple negative, Her-2 subtypes) was also analyzed to investigate marker specificity for grade 1 luminal A tumors. From the total of 4405 proteins identified (FDR<5%), the top 65 differentially expressed together with 30 previously identified and control markers were analyzed also at transcript level. Increased levels of carboxypeptidase B1 (CPB1), PDZ and LIM domain protein 2 (PDLIM2) and ring finger protein 25 (RNF25) were associated specifically with lymph node positive grade 1 tumors, whereas stathmin 1 (STMN1) and thymosin beta 10 (TMSB10) associated with aggressive tumor phenotype also in high grade tumors at both protein and transcript level. For CPB1, these differences were also observed by immunohistochemical analysis on tissue microarrays. Upregulation of putative biomarkers in lymph node positive (vs. negative) luminal A tumors was validated by gene expression analysis of an independent published dataset (N=343) for CPB1 (p=0.00155), PDLIM2 (p=0.02027) and RELA (p=0.00015). Moreover, statistically significant connections with patient survival were identified in another public dataset (N=1678). Our findings indicate unique pro-metastatic mechanisms in grade 1 tumors that can include up-regulation of CPB1, activation of NF-κB pathway and changes in cell survival and cytoskeleton. These putative biomarkers have potential to identify the specific minor sub-population of breast cancer patients with low grade tumors who are at higher than expected risk of recurrence and who would benefit from more intensive follow-up and may require more personalized therapy.