Project description:Overexpression and/or amplification of the ErbB-2 oncogene, as well as inactivation of the tumor suppressor PTEN, are two important genetic events in human breast carcinogenesis. To address the biological impact of conditional inactivation of PTEN on ErbB-2-induced mammary tumorigenesis, we generated a novel transgenic mouse model that utilizes the MMTV promoter to directly couple expression of activated ErbB-2 and Cre recombinase to the same mammary epithelial cell (MMTV-NIC). Disruption of PTEN in the mammary epithelium of the MMTV-NIC model system dramatically accelerated the formation of multifocal and highly metastatic mammary tumors, which exhibit homogenous pathology. PTEN-deficient/NIC tumorigenesis was associated with an increase in angiogenesis. Moreover, inactivation of PTEN in the MMTV-NIC mouse model resulted in hyperactivation of the PI3K/Akt signalling pathway. However, like the parental strain, tumors obtained from PTEN-deficient/NIC mice displayed histopathological and molecular features of the luminal-like subtype of breast cancer. Taken together, our findings provide important implications in understanding the molecular determinants of mammary tumorigenesis driven by PTEN deficiency and ErbB-2 activation, and could provide a valuable tool for testing the efficacy of therapeutic strategies that target these critical signalling pathways. Experiment Overall Design: Common reference design. 9 samples (including 2 normal tissue and 7 tumor tissue samples) replicated twice as dye swaps, generating a total of 18 arrays.
Project description:Overexpression and/or amplification of the ErbB-2 oncogene, as well as inactivation of the tumor suppressor PTEN, are two important genetic events in human breast carcinogenesis. To address the biological impact of conditional inactivation of PTEN on ErbB-2-induced mammary tumorigenesis, we generated a novel transgenic mouse model that utilizes the MMTV promoter to directly couple expression of activated ErbB-2 and Cre recombinase to the same mammary epithelial cell (MMTV-NIC). Disruption of PTEN in the mammary epithelium of the MMTV-NIC model system dramatically accelerated the formation of multifocal and highly metastatic mammary tumors, which exhibit homogenous pathology. PTEN-deficient/NIC tumorigenesis was associated with an increase in angiogenesis. Moreover, inactivation of PTEN in the MMTV-NIC mouse model resulted in hyperactivation of the PI3K/Akt signalling pathway. However, like the parental strain, tumors obtained from PTEN-deficient/NIC mice displayed histopathological and molecular features of the luminal-like subtype of breast cancer. Taken together, our findings provide important implications in understanding the molecular determinants of mammary tumorigenesis driven by PTEN deficiency and ErbB-2 activation, and could provide a valuable tool for testing the efficacy of therapeutic strategies that target these critical signalling pathways.
Project description:The mammary epithelia are mainly composed of two distinct lineages, the basal and luminal cells. In our MMTV-Cre; Brca1flox/flox mouse model, we found the Brca1 knockout mainly occurred in the luminal cells, which will lead the mammary tumorigenesis. To investigate the Brca1 deficiency mediated mammary tumorigenesis, we sorted the luminal cells from wild type mice and MMTV-Cre; Brca1flox/flox mice for RNAseq analysis.
Project description:Precancerous tissue microenvironment is thought to be important for tumorigenesis when cancer stem-like cells (CSCs) begin to grow, though underlying mechanisms remain unclear. Here, we uncovered critical roles of luminal progenitor cells expressing FRS2β, an inhibitory adaptor for ErbB signaling, to create the cytokines-rich CSC niche in mammary tissues. Deficiency of FRS2β greatly decreased mammary tumorigenesis with decreased tumor stroma in mouse mammary tumor virus (MMTV)-ErbB2 mice. Moreover, FRS2β-deficient precancerous mammary tissues did not allow tumorigenesis derived from xenografted wild type FRS2β tumor cells. Insulin-like growth factor (IGF) 1 and CXC chemokine ligand (CXCL) 12, stemness- and stroma-inducing cytokines, respectively, were expressed at low levels in FRS2β-deficient precancerous mammary cells. Treatment with inhibitors against these cytokines in precancerous mice greatly decreased tumorigenic potential. In addition, human breast cancer tissues in which FRS2β is highly expressed in tumor cells harbor more stroma, and are associated with poor prognosis. Thus, cytokines-rich CSC niche and tumor microenvironment induced by FRS2β expressed in luminal progenitor cells and tumor cells play important roles for tumorigenesis.
Project description:To model the effect of Pten loss on breast cancer, we deleted Pten using a floxed allele and the deleter lines MMTV-Cre(NLST), which targets stem/bi-potent progenitor cells, and WAP-Cre, which targets CD24-positive, pregnancy-identified stem cells/alveolar progenitors. Mammary tumors were detected in WAP-Cre:Ptenf/f females with a latency of 15.2 months. By 18 months, nearly all mice had succumbed to cancer. MMTV-Cre:Ptenf/f mice developed mammary tumors after a longer latency of 26.4 months and reduced penetrance (70%) compared to WAP-Cre:Ptenf/f mice. Tumors from both models were heterogeneous, consisting primarily of differentiated adenocarcinoma (adenomyoepithelioma; ~70%) and adenosquamous carcinoma (20-25%). In addition, a small fraction of tumors was classified as acinar and poorly differentiated adenocarcinoma (4-7%) and adenosarcoma (3-4%). To test the consequences of combined Pten and p53 gene mutation on breast cancer, we deleted both genes via MMTV-Cre or WAP-Cre. Kaplan-Meier tumor free survival curves revealed that WAP-Cre:Ptenf/f:p53f/f and MMTV-Cre:Ptenf/f:p53f/f females developed tumors with reduced latency of 11.3 and 9.8 months, compared with 15.2, 26.4, and 16.9 months for single-mutant WAP-Cre:Ptenf/f, MMTV-Cre:Ptenf/f or MMTV-Cre:p53f/f mice, respectively. In contrast to the heterogeneity of Pten tumors and small percentage of adenosarcomas in these mice, ~70% of Pten:p53 lesions were histologically classified as adeno-sacrcomatoid-like or mesenchymal-like breast cancer, with the rest exhibiting mixed mesenchymal plus adenocarcinomas and differentiated adenocarcinomas. The adeno-sacrcomatoid-like tumors expressed the mesenchymal markers vimentin, K5, SMA, N-cadherin and desmin but not ER, as well as islands of luminal-like K18 expressing cells surrounded by a layer of K14-positive cells. We used microarrays to detect differentially expressed genes in the Pten:p53 double-knock-out vs Pten or p53 single deletions Total RNA was extracted from tumors developed by double Trizol method and hybridized on Affymetrix microarrays.
Project description:To investigate the impact of combined Rb and p53 loss in mammary tumorigenesis, we used transgenic and viral approaches to delete Rb and p53 floxed alleles specifically in the mouse mammary epithelium. Although MMTV-Cre (NLST) targets stem/bi-potent progenitors in the mammary gland, a subset of MMTV-Cre:Rbf/f;p53f/f mice developed non-mammary tumors. Thus, freshly isolated primary mammary epithelial cells from these animals were transplanted into the mammary fat pads of immunodeficient mice and monitored for tumor formation. In addition, primary MECs were isolated from Cre-negative Rbf/f;p53f/f mice, infected with Ad-Cre followed by orthotopic transplantation. In all these cases, resulting tumors shared similar spindle-shape histology, expressed high levels of vimentin, a mesenchymal marker, but not E-cadherin, a luminal marker, and were classified as adeno-sacrcomatoid/spindle-cell/mesenchymal-like breast cancer. We used aCGH to detect copy number alterations associated with Rb/p53 deletion. Tumor DNAs from MMTV-Cre: Rbf/f;p53f/f and Ad-Cre: Rbf/f;p53f/f conditional mutant mice are being compared to pooled tail DNAs in order to identify common alterations associated with Rb/p53 deficient tumorigenesis
Project description:WAP-Cre:Ptenf/f:p53lox.stop.lox_R270H composite mice were generated by genetic crossing. In these mice, Pten is deleted and a R270H p53 mutation in the DNA binding domain is induced upon expression of Cre recombinase in pregnancy-identified alveolar progenitors. Tumors were characterized by histology, marker analysis, various bioinformatics methods, high-throughput (HTP) FDA-drug screen as well as orthotopic injection to quantify tumor initiating cells (TICs) and tail-vein injection to identify lung-metastasis. Expression data comparing 2 types of Pten-deficient tumors (spindle and poorly differentiated) with other modles of mouse mammary tumors 2 types of Pten deletion plus p53-R270H mutation tumors (spindle and poorly differentiated) was compared with MMTV-Neu, Spindle Pten-p53-deficient tumors, and wild-type mammary gland cells.
Project description:Mouse mammary tumor virus (MMTV) is a complex retrovirus that induces breast cancer in mice in the absence of known virally-encoded oncogenes. Like other non-acute retroviruses, tumorigenesis by MMTV is thought to occur primarily through insertional mutagenesis, leading to the activation of cellular proto-oncogenes and outgrowth of selected cells. In this study, we investigated whether MMTV encodes microRNAs (miRNAs) and/or modulates host miRNAs that could contribute to tumorigenesis. We have applied high throughput small RNA sequencing to the analysis of MMTV-infected cells and MMTV-induced mammary tumors. Our results demonstrate that MMTV does not encode miRNAs. However, MMTV infected cells and MMTV-producing tumors have altered levels of several cellular miRNAs, including increases in the expression of members of the oncogenic miRNA cluster, miR-17-92. Notably, similar changes in levels of these miRNAs have been previously reported in human breast cancers. Combined, our results demonstrate that virally encoded miRNAs do not contribute to MMTV-mediated tumorigenesis, but that changes in specific host miRNAs in infected cells may contribute to virus replication and tumor biology.
Project description:To model the effect of Pten loss on breast cancer, we deleted Pten using a floxed allele and the deleter lines MMTV-Cre(NLST), which targets stem/bi-potent progenitor cells, and WAP-Cre, which targets CD24-positive, pregnancy-identified stem cells/alveolar progenitors. Mammary tumors were detected in WAP-Cre:Ptenf/f females with a latency of 15.2 months. By 18 months, nearly all mice had succumbed to cancer. MMTV-Cre:Ptenf/f mice developed mammary tumors after a longer latency of 26.4 months and reduced penetrance (70%) compared to WAP-Cre:Ptenf/f mice. Tumors from both models were heterogeneous, consisting primarily of differentiated adenocarcinoma (adenomyoepithelioma; ~70%) and adenosquamous carcinoma (20-25%). In addition, a small fraction of tumors was classified as acinar and poorly differentiated adenocarcinoma (4-7%) and adenosarcoma (3-4%). To test the consequences of combined Pten and p53 gene mutation on breast cancer, we deleted both genes via MMTV-Cre or WAP-Cre. Kaplan-Meier tumor free survival curves revealed that WAP-Cre:Ptenf/f:p53f/f and MMTV-Cre:Ptenf/f:p53f/f females developed tumors with reduced latency of 11.3 and 9.8 months, compared with 15.2, 26.4, and 16.9 months for single-mutant WAP-Cre:Ptenf/f, MMTV-Cre:Ptenf/f or MMTV-Cre:p53f/f mice, respectively. In contrast to the heterogeneity of Pten tumors and small percentage of adenosarcomas in these mice, ~70% of Pten:p53 lesions were histologically classified as adeno-sacrcomatoid-like or mesenchymal-like breast cancer, with the rest exhibiting mixed mesenchymal plus adenocarcinomas and differentiated adenocarcinomas. The adeno-sacrcomatoid-like tumors expressed the mesenchymal markers vimentin, K5, SMA, N-cadherin and desmin but not ER, as well as islands of luminal-like K18 expressing cells surrounded by a layer of K14-positive cells. We used microarrays to detect differentially expressed genes in the Pten:p53 double-knock-out vs Pten or p53 single deletions