Project description:Herbal medicines have greatly contributed to human health worldwide for thousands of years. In particular, traditional Chinese medicine plays an essential role in the prevention and treatment of COVID-19. With the exponentially increasing use and global attention to herbal medicinal products (HMPs), efficacy and safety have become major public concerns in many countries. In general, the quantification and qualification of quality markers (Q-markers) is the most common way to solve this issue. In the last few decades, small molecules, including flavonoids, terpenes, phenylpropanoids, alkaloids, phenols, and glycosides have been extensively investigated as Q-markers for HMP quality control. With the development of biotechnology in the last decade, scientists have begun to explore HMPs macromolecules, including polysaccharides and DNA, for their establishment as Q-markers. In recent years, supermolecules with stronger biological activities have been found in HMPs. In this review, we summarize and discuss the current Q-markers for HMP quality control; in particular, the possibility of using supermolecules as Q-markers based on structure and activity was discussed.
| S-EPMC9767884 | biostudies-literature
Project description:ITS2 metabarcoding data of fine roots and soil
Project description:Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and expression of pro-inflammatory cytokines in the epidermis. New biological drugs were developed for the systemic treatment of moderate to severe psoriasis. However, products for the topical treatment of mild psoriasis are still required. Here, we examined the effect of natural compounds on psoriasis-like keratinocytes in vitro and ex vivo. Psoriasis-like keratinocytes were generated by treating human primary keratinocytes with the psoriasis-associated cytokines IL-17A, TNF-α and IL-22. Initially, 10 botanical extracts from Ayurvedic Medicine, Traditional Chinese Medicine, Northern American traditional medicine and Occidental Monastic Medicine were investigated using BrdU assays and IL-6 and IL-8 ELISAs. Curcuma amada, Humulus lupulus and Hypericum perforatum turned out to be the most effective plant extracts. In vitro, the plant extracts inhibited the expression of anti-microbial peptides (β-defensin 2), the hyperproliferation marker keratin 17, the glucose transporter 1 and downregulated the nuclear translocation of NF-κB and pSTAT3. In an ex vivo psoriasis model, Humulus lupulus displayed the most prominent anti-proliferative and anti-inflammatory effect. In conclusion, among the plant extracts investigated, Humulus lupulus showed the most promising anti-psoriatic effect. It is an interesting candidate for topical psoriasis treatment that should be further studied in clinical trials.