Project description:The marker- and genome-based development of drought resistant and high yield cereal crops is the most pressing activity in a constantly more stress- and harmful environment for plant productivity. Genome-based assisted breeding is only capable to cover 30-40 % of phenotypic variance according to the most recent GWAS studies. There are many processes which are not predictable by genome information, especially protein translation and activity which is crucial for phenotypic responses and survival of the plants under severe stresses. Therefore, we present comparative proteomic and physiological analysis under drought stress in two of the most important staple food crops pearl millet and wheat thereby representing C4 and C3 plants. Here, we have selected contrasting genotypes, and performed a large-scale comparative analysis from the molecular to the phenotypic level under drought stress. We were able to establish molecular-physiological phenotypes for: 1. Stay green protein signature in contrasting pearl millet genotypes which is highly correlated to the physiological data, in the submitted manuscript. 2. No clear indication of stay green proteome signatures in contrasting wheat genotypes but instead differential senescence proteome signatures not capable to cope with similar drought stress. These mechanisms are decisive for drought resistance and yield/grain filling under stress conditions and for the first time these physiological phenotypes (seed yield, root growth, and photosynthesis) are directly linked to the molecular proteomic phenotype. We think these results are of broad importance for the scientific community. This study demonstrates the enormous molecular and phenotypic plasticity because the selected genotypes represent the extreme points of stress adaptation and yield protection.
Project description:RNASeq of roots from two genotypes of Arabidopsis thaliana plants, Col-0 and myb36-2 grown axenically or with a 41 member bacterial Synthetic Community (SynCom) to explore the interaction between the root diffusion barriers and the root microbiome.
Project description:Phosphate (Pi) deficiency severely affects crop yield. Modern high yielding rice genotypes are sensitive to Pi deficiency whereas traditional rice cultivars are naturally compatible to low Pi ecosystems. However, the underlying molecular mechanisms for low Pi tolerance in traditional genotypes remain largely elusive. To delineate the molecular mechanisms for low Pi tolerance, two contrasting rice genotypes - Dular (low Pi tolerant) and PB1 (low Pi sensitive) - have been selected. Comparative morphophysiological, global transcriptome and lipidome analyses of root and shoot tissues of both genotypes raised under Pi deficient and sufficient conditions revealed the potential low Pi tolerance mechanisms of traditional genotype. Most of the genes associated with enhanced internal Pi utilization (phospholipid remobilization) and modulation of root system architecture (RSA) are highly induced in traditional rice genotype, Dular. Higher reserve of phospholipid and greater accumulation of galactolipids under low Pi in Dular indicated its better internal Pi utilization. Furthermore, Dular also maintained better root growth than PB1 under low Pi resulting in larger root surface area due to increased lateral root density and root hair length. Genes involved in enhanced low Pi tolerance of traditional genotype can be exploited to improve the low Pi tolerance of modern high yielding rice cultivars.
Project description:In this study, we analysed the proteomic response of 5mm sections of root tips to water-deficit stress in two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Using a Partial Least Square Discriminant Analysis, we identified statistically significant differentially abundant proteins across genotypes and conditions. Analysis of biological processes led to the identification of novel proteins involved in root elongation with specific expression patterns in Azucena.
2022-08-11 | PXD033343 | Pride
Project description:Transcriptome sequence of two sesame genotypes with contrasting root biomass and morphology
Project description:This study was aimed to deal with a comparative proteome analysis of the two chickpea genotypes with contrasting response to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS). Proteins were extracted from the root tissues collected from the control and drought stressed plants of both the genotypes. NanoLC-MS/MS analysis of the protein sample was performed using EASY-nLC 1000 system for the separation and identification of peptides/proteins. This study provided a mechanistic insight of drought stress tolerance in chickpea.
Project description:Stress events have transgenerational effects that influence plant growth in the subsequent generation. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress were investigated in two genotypes. Both genotypes showed significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the reduction rate of most traits were lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1,534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions associated with DEM-target modules in stress adaptation processes, which could contribute to the phenotypic differences observed in two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on N starvation response in durum wheat.
2021-04-21 | GSE168094 | GEO
Project description:Transcriptome analysis of root tips of two contrasting rice genotypes under drought stress
| PRJNA716593 | ENA
Project description:miRNA profiling of root tips of two contrasting rice genotypes under drought stress