Project description:Transcriptional profiling of Lactobacillus delbrueckii subsp. bulgaricus 2038 during the growth in casein proteins conditioned medium compared with the start control (cells treated in whey conditioned medium). Identifying the genes that are differentially expressed during the growth of Lb. bulgaricus 2038 in casein proteins condition provides a starting point for the investigation of metabolic mechanisms.
Project description:Transcriptional profiling of Lactobacillus delbrueckii subsp. bulgaricus 2038 during the growth in casein proteins conditioned medium compared with the start control (cells treated in whey conditioned medium). Identifying the genes that are differentially expressed during the growth of Lb. bulgaricus 2038 in casein proteins condition provides a starting point for the investigation of metabolic mechanisms. Twelve Samples at different growth time points. Three replicates each.
Project description:The objective of this study was to decipher the metabolism expressed by Lactobacillus delbrueckii subsp. delbrueckii CIRM-BIA865 during soy juice fermentation using transcriptomics. The whole genome was sequenced, assembled and annotated. CIRM-BIA865 was then used to ferment soy juice to produce a soy-based yogurt. Samples were analysed in kinetics during fermentation, at pH values of 6.5, 6, 5 and 4.6. RNA from CIRM-BIA865 were extracted and sequenced using paired-end Illumina. Reads were mapped using Bowtie2 on previously obtained genome of CIRM-BIA865. No mismatch were allowed. Reads mapped on CDS were counted using htseqcount.List of differentially expressed (DE) genes between two successive sampling times (determined by pH) were generated using DEseq2 with a modified t-test and a p-value adjusted by Bonferoni inferior to 0.05. Fold changes expressed how many times genes were induced along the fermentations.
Project description:The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium L. bulgaricus . S. cerevisiae and L. bulgaricus are both frequently encountered in kefir, a fermented dairy product. In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together. The design of the cultivation conditions was based on the observation that L. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not L. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial β-galactosidase. Mixed populations of yeasts and lactic acid bacteria occur in many dairy, food and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the co-cultures, five mechanisms of interaction were identified. 1. L. bulgaricus hydrolyses lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by L. bulgaricus, is excreted and provides a carbon source for yeast. 2. In pure cultures, L. bulgaricus only grows at increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. 3. Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacteria. 4. A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by L. bulgaricus. 5. Transcriptome analysis of L. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipids metabolism suggesting either a competition of the two microorganisms for fatty acids, or a response to the ethanol produced by S. cerevisiae.