Project description:UnlabelledThe aim of this study is to determine the affinity of six active compounds of Aegle Marmelos Correa, they are (E, R)-Marmin, skimmianine, (S)-aegeline, aurapten, zeorin, and dustanin as antihistamines in histamine H1 receptor in comparison to cetirizin, diphenhydramine and chlorpheniramine as ligands comparison. Previously, in the in vitro study marmin obviously antagonized the histamine H1 receptor in a competitive manner.Methodsmolecular docking to determine the interaction of ligand binding to its receptor. Lower docking score indicates more stable binding to that protein.ResultsMarmin, skimmianine, aegeline, aurapten, zeorin, and dustanin were potential to develop as antihistamine agents, especially as histamine H1 receptor antagonists by interacting with amino acid residues, Asp107, Lys179, Lys191, Asn198, and Trp428 of histamine H1 receptor.ConclusionsBased on molecular docking, Amino acid residues involved in ligand protein interactions were Asp107, Lys179, Lys191, Asn198, and Trp428.
Project description:For many years, Aegle marmelos (A. marmelos) has been used medicinally and as a dietary supplement. Despite this, there are minimal research data on A. marmelos phytochemical properties and pharmacological effects. This study aimed to explore the phytoconstituents, cytotoxicity, glucose uptake, and antioxidant and antidiabetic potential of an alcoholic extract of A. marmelos leaf. The cytotoxicity of A. marmelos in HepG2 cells was tested in vitro, and the results revealed that it has strong cytocompatibility and cytoprotective properties. The extract's antioxidant activities were investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. Antioxidant potential was shown to be quite impressive. The enzymes α-amylase and α-glycosidase were found to be substantially inhibited by A. marmelos, with IC50 values of 46.21 and 42.07 mg/mL, respectively. In HepG2 cells, A. marmelos significantly reduced ROS levels that were elevated due to high glucose and enhanced glucose consumption (p < 0.05). These activities might be due to the enrichment of bioactive phytoconstituents analyzed chromatographically using GC/MS and HPLC. The findings of this study show that A. marmelos could be an effective restorative therapy for diabetes and related diseases.