Project description:Using this microarray data, we identified 19898 probes (717 upregulated and 1512 downregulated in the mock- and MeJA-treated leaf samples at ‘1wk’ and ‘2wk’ stages; 17669 with differential expression in these samples), compared with the mock-treated sample at ‘0wk’ stage. This work aims to identify the genes related to MeJA-induced senescence of tobacco whole-plant, and found several genes differentially expressed between the mock- and MeJA-treated samples at the same stage.
Project description:Stresses from either biotic or abiotic origins can have significant impact towards plant physiology and molecular regulation. Jasmonate acid (JA) and its derivative, methyl JA (MeJA) are hormonal cues released by plants which signal defensive response to curb the damage from such stresses. In an attempt to study the defensive response, a tropical herbal plant, Persicaria minor (P. minor) which is known for its pungent smell as well as various bioactivities including antimicrobial and anti-cancer, has been treated with MeJA to invoke the stress signaling. Such elicitation has been performed in various plants such as Arabidopsis, rice and hairy root cultures of certain herbs, yet how MeJA directly influenced the proteome of a herbal species particularly P. minor has not been previously elucidated. In this study, P. minor plants was exogenously treated with MeJA and its proteome was investigated using a new proteomics approach called SWATH-MS.
Project description:In previous work, cephalotaxine, harringtonine, homoharringtonine were shown to be accumulated differentially after various stimuli. Especially, after MeJA treatment, the concentration of 3 cephalotaxus alkaloids all showed decreasing. We speculated that the genes expressed lower after MeJA treatment might encode some enzymes responsible for the biosynthesis of cephalotaxus alkaloids. Therefore, choosing the sample treated with MeJA and the control sample for comparative iTRAQ analysis will greatly facilitate dissection of the genes involved in the biosynthesis of cephalotaxus alkaloids and even the acyl portions of cephalotaxus ester alkaloids. This approach is widely used for mining and identifying novel genes in the biosynthesis of secondary metabolites without genome data in plants.
Project description:We reported the application of high-throughput sequencing technology (RNA-seq) for the transcriptome of T. chinensis cells and the transcriptional alternatives of that responded to MeJA were comprehensively and quantitatively assessed with high-throughput sequencing technology (RNA-seq). By sequencing > 29 million reads (200 bp in length) of cDNA from each of MeJA-treated T. chinensis cells at 16 h (T16) and the control (T0), we identified 46,581 transcripts and uncovered 13,469 genes differentially expressed in response to MeJA. We provided functional clues for understanding the regulation mechanisms of MeJA-mediated defense responses and taxol biosynthesis.
Project description:To understand signal transduction mechanism by MeJA in rice, we have analyzed transcription profile with 60K Rice Whole Genome Microarray after MeJA treatment. Gene transcripts were extracted from ten individual rice plants treated with 100 uM MeJA for 6 hrs. RNA samples from these plants were used to generate cyanine-3 (Cy3) and Cy5-labeled complementary DNA (cDNA) probes, which were then hybridized to the microarray. Each data set was obtained from three biological repeats independently.
Project description:Transcriptional profiling of MeJA-treated pearl millet seedlings over time [0, 12, 24 and 48 hours post treatment (hpt)]. Keywords: Time course, Stress response
Project description:This study evaluates the transcriptome of Arabidopsis thaliana seedlings (Col-0 ecotype) treated with methyl jasmonate (MeJA) or with the salicylic acid analog benzothiadiazole (BTH).
Project description:Analysis of leaves of wild-type and rice COI mutants treated with methyl jasmonate (MeJA). Results provide the role of rice COI on response to jasmonic acid.