Project description:Marker-assisted selective breeding of fish with higher levels of resistance towards specific pathogens has shown successful, but. However, the impact of host genotype on multiple pathogen infections are is still poorly investigated. This study examined the resistance in rainbow trout (Oncorhynchus mykis) towards infection with the eye fluke Diplostomum pseudospathaceum. We used genetically selected rainbow trout, carrying SNPs associated with resistance towards the parasitic ciliate Ichthyophthirius multifiliis, and exposed the fish to eye fluke cercariae. We showed that fish partly resistant to I. multifiliis were more susceptible to eye fluke invasion. Expression The expression of immune relevant genes (encoding innate and adaptive factors) was also affected as these genotypes responded less strongly to a secondary fluke infection. The complexity of genome architecture in disease resistance towards multiple pathogens is discussed. A total of 200 rainbow trout (body weight 14.3-17.7 g, body length 10.2-11.5 cm) were used for the study. Two groups of rainbow trout with high (QTL fish) and low (non-QTL fish) frequency of SNPs associated with I. multifiliis resistance, were hatched from eyed eggs at the disease free recirculated Bornholm Salmon Hatchery, Nexø, Denmark and subsequently reared to the fingerling stage. For this purpose, the first group (QTL-fish) was produced by using sperm from three male genotyped parents carrying SNPs AX-89947214 (Omy17) and AX-89960822 (Omy16), and the other group (non-QTL fish) was produced by using sperm from three other male parents negative for these SNPs. In both cases, sperm was used to fertilize a common pool of eggs stripped from a total of 30 outbred females. Processes of hatching and subsequent rearing of fry to the fingerling stage did not differ between groups of QTL fish and non-QTL fish. From each group (QTL and non-QTL fish) we randomly gathered 100 rainbow trout and transported them (3 h duration) from the hatchery to the infection facility at the University of Copenhagen. Fish were then accommodated and acclimatized 14 d in identical aerated glass tanks with internal biofilters (25 fish per 60 L water, total tank volume 80 L), which were placed in a temperature temperature-controlled room (water temperature constant at 12°C, pH 7.6). We used 30% water change per day to maintain ammonia levels below 0.25. Fish were fed by pelleted feed (1% of fish biomass per day). All fish were genotyped with respect to the two relevant QTLs, one on chomosome 16 and one on chromosome 17. Fish being double heterozugous were excluded from qPCR analysis.
Project description:Parasite-mediated selection is considered one of the potential mechanisms contributing to the coexistence of asexual-sexual complexes. Gibel carp (Carassius gibelio), an invasive fish species in Europe, often forms populations composed of gynogenetic and sexual specimens. In the present study, experimental infection was induced in gynogenetic and sexual gibel carp using eye-fluke Diplostomum pseudospathaceum (Trematoda), and the transcriptome profile of the spleen as a major immune organ in fish was analyzed to reveal the differentially expressed immunity-associated genes related to D. pseudospathaceum infection differing between gynogenetic and sexual gibel carp. High parasite infection was found in gynogenetic fish when compared to genetically diverse sexuals. Although metacercariae of D. pseudospathaceum are situated in an immune-privileged organ, our results show that eye trematodes may induce a host immune response. We found differential gene expression induced by eye-fluke infection, with various impacts on gynogenetic and sexual hosts, documenting for the majority of DEGs upregulation in sexuals, and downregulation in asexuals. Differences in gene regulation between gynogenetic and sexual gibel carp were evidenced in many immunity-associated genes. GO analyses revealed the importance of genes assigned to the GO terms: immune function, the Notch signaling pathway, MAP kinase tyrosine/threonine/phosphatase activity, and chemokine receptor activity. KEGG analyses revealed the importance of the genes involved in 12 immunity-associated pathways – specifically, FoxO signaling, adipocytokine signaling, TGF-beta signaling, apoptosis, Notch signaling, C-type lectin receptor signaling, efferocytosis, intestinal immune network for IgA production, insulin signaling, virion - human immunodeficiency virus, Toll-like receptor signaling, and phosphatidylinositol signaling system. Our study indicates the limited potential of asexual fish to cope with higher parasite infection (likely a loss of capacity to induce an effective immune response) and highlights the important role of molecular mechanisms associated with immunity for the coexistence of gynogenetic and sexual gibel carp, potentially contributing to its invasiveness.
Project description:BackgroundRecent molecular studies have discovered substantial unrecognised diversity within the genus Diplostomum in fish populations in Europe and North America including three species complexes. However, data from the first intermediate host populations are virtually lacking. This study addresses the application of an integrative taxonomic approach to the cryptic species diversity of Diplostomum spp. in natural lymnaeid snail populations in Europe with a focus on the 'D. mergi' species complex.MethodsTotals of 1,909 Radix auricularia, 349 Radix peregra, 668 Stagnicola palustris and 245 Lymnaea stagnalis were sampled at five reservoirs of the Ruhr river system in Germany and screened for infections with Diplostomum spp. Cercariae were examined and identified alive, fixed and under scanning electron microscopy. Sequences from the barcode region of the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene and from the internal transcribed spacer cluster (ITS1-5.8S-ITS2) of the rRNA gene were amplified for 51 and 13 isolates, respectively.ResultsDetailed morphological and molecular analyses provided evidence for three named species (Diplostomum spathaceum, D. pseudospathaceum and D. parviventosum), and a further four species-level lineages ('D. mergi Lineages 2-4' and 'Diplostomum sp. Clade Q' in the lymnaeid snail populations from the Ruhr river basin. The paper provides the first descriptions of molecularly identified cercariae of D. spathaceum and of the cercariae of D. parviventosum, three lineages of the 'D. mergi' species complex and of 'Diplostomum sp. Clade Q'.ConclusionThe integration of molecular and morphological evidence for Diplostomum spp. achieved in this study will serve as a baseline for species identification of these important parasites of snail and fish populations and thus advance further studies on the distribution of Diplostomum spp. in Europe.
Project description:DNA sequence data became an integral part of species characterization and identification. Still, specimens associated with a particular DNA sequence must be identified by the use of traditional morphology-based analysis and correct linking of sequence and identification must be ensured. Only a small part of DNA sequences of the genus Diplostomum (Diplostomidae) is based on adult isolates which are essential for accurate identification. In this study, we provide species identification with an aid of morphological and molecular (cox1, ITS-5.8S-ITS2 and 28S) characterization of adults of Diplostomum baeri Dubois, 1937 from naturally infected Larus canus Linnaeus in Karelia, Russia. Furthermore, we reveal that the DNA sequences of our isolates of D. baeri are identical with those of the lineage Diplostomum sp. clade Q , while other sequences labelled as the ‘D. baeri’ complex do not represent lineages of D. baeri. Our new material of cercariae from Radix balthica (Linnaeus) in Ireland is also linked to Diplostomum sp. clade Q. We reveal that D. baeri is widely distributed in Europe; as first intermediate hosts lymnaeid snails (Radix auricularia (Linnaeus), R. balthica) are used; metacercariae occur in eye lens of cyprinid fishes. In light of the convoluted taxonomy of D. baeri and other Diplostomum spp., we extend the recommendations of Blasco-Costa et al. (2016, Systematic Parasitology 93, 295–306) for the ‘best practice’ in molecular approaches to trematode systematics. The current study is another step in elucidating the species spectrum of Diplostomum based on integrative taxonomy with well-described morphology of adults linked to sequences.
Project description:Marker-assisted selective breeding of fish with higher levels of resistance towards specific pathogens may improve fish health, but the impact of host genotype on susceptibility to multiple pathogen infections is still poorly investigated. This study examined the resistance in rainbow trout Oncorhynchus mykiss towards infection with the eye fluke Diplostomum pseudospathaceum. We used genetically selected rainbow trout, carrying SNPs associated with resistance towards the parasitic ciliate Ichthyophthirius multifiliis, and exposed the fish to eye fluke cercariae. We showed that fish partly resistant to I. multifiliis were more susceptible to eye fluke invasion. The expression of immune relevant genes (encoding innate and adaptive factors) was also affected as these genotypes responded less strongly to a secondary fluke infection. The complexity of genome architecture in disease resistance towards multiple pathogens is discussed.
Project description:We characterised morphologically and molecularly Diplostomum phoxini (Faust, 1918) based on cercarial isolates from the snail Ampullaceana balthica (L.) (Gastropoda: Lymnaeidae) and metacercariae from the Eurasian minnow, Phoxinus phoxinus (L.) (Cypriniformes: Leuciscidae), and provided molecular evidence for the identification of the snail intermediate host. Phylogenetic analyses based on the cytochrome c oxidase subunit 1 (cox1) gene depicted 44 molecularly characterised species and genetically distinct lineages of Diplostomum, and resulted in: (i) a re-identification/re-classification of 98 isolates plus D. baeri sampled in North America; (ii) re-definition of the composition of the D. baeri species complex which now includes nine molecularly characterised species/lineages; (iii) re-definition of the composition of the D. mergi species complex which now includes seven molecularly characterised species/lineages; and (iv) an updated nomenclature for the molecularly characterised species-level lineages of Diplostomum.
Project description:Metacercariae of Diplostomum are important fish pathogens, but reliable data on their diversity in natural fish populations are virtually lacking. This study was conducted to explore the species diversity and host-parasite association patterns of Diplostomum spp. in a large riverine system in Europe, using molecular and morphological data.Twenty-eight species of fish of nine families were sampled in the River Danube at Nyergesújfalu in Hungary in 2012 and Štúrovo in Slovakia in 2015. Isolates of Diplostomum spp. were characterised morphologically and molecularly. Partial sequences of the 'barcode' region of the cytochrome c oxidase subunit 1 (cox1) and complete sequences of the nicotinamide adenine dinucleotide dehydrogenase subunit 3 (nad3) mitochondrial genes were amplified for 76 and 30 isolates, respectively. The partial cox1 sequences were used for molecular identification of the isolates and an assessment of haplotype diversity and possible host-associated structuring of the most prevalent parasite species. New primers were designed for amplification of the mitochondrial nad3 gene.Only lens-infecting Diplostomum spp. were recovered in 16 fish species of five families. Barcoding of representative isolates provided molecular identification for three species/species-level genetic lineages, D. spathaceum, D. pseudospathaceum and 'D. mergi Lineage 2', and three single isolates potentially representing distinct species. Molecular data helped to elucidate partially the life-cycle of 'D. mergi Lineage 2'. Many of the haplotypes of D. spathaceum (16 in total), D. pseudospathaceum (15 in total) and 'D. mergi Lineage 2' (7 in total) were shared by a number of fish hosts and there was no indication of genetic structuring associated with the second intermediate host. The most frequent Diplostomum spp. exhibited a low host-specificity, predominantly infecting a wide range of cyprinid fishes, but also species of distant fish families such as the Acipenseridae, Lotidae, Percidae and Siluridae. The nad3 gene exhibited distinctly higher levels of interspecific divergence in comparison with the cox1 gene.This first exploration of the species diversity and host ranges of Diplostomum spp., in natural fish populations in the River Danube, provided novel molecular, morphological and host-use data which will advance further ecological studies on the distribution and host ranges of these important fish parasites in Europe. Our results also indicate that the nad3 gene is a good candidate marker for multi-gene approaches to systematic estimates within the genus.