Project description:Bacteriophages (phages) are widespread in Streptococcus pneumoniae, with most strains carrying phage genomes integrated into the chromosome. RNA sequencing was utilised to explore whether phage gene expression could be detected. The pneumococcal reference strain PMEN3 (Spain9V-3), which contained two full-length phages and one partial phage, was grown in broth culture and mitomycin C was added to facilitate phage induction. PMEN3 culture samples were taken at sequential time points and RNA was extracted and sequenced.
Project description:In this research, we used RNA-sequencing technology to detect genome-wide differentially expressed genes in spleen and gill of Vibrio harveyi -infected Takifugu rubripes.This high-throughput sequencing could help us to understand new mechanisms of action of V. harveyi induced aquaculture fish disease.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:Vibrio harveyi is a major bacterial pathogen that can cause fatal vibriosis in Chinese tongue sole (Cynoglossus semilaevis). To comprehend the molecular mechanisms of C. semilaevis host response against V. harveyi infection, we performed transcriptome (RNA-seq) analysis of C. semilaevis from resistant family and susceptible family.
Project description:Bacterial populations face the constant threat of viral predation exerted by bacteriophages (or phages). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Here, we show that aminoglycosides, a well-known class of antibiotics produced by Streptomyces, are potent inhibitors of phage infection. We observed a broad phage inhibition by aminoglycosides. We demonstrate that aminoglycosides do not prevent the injection of phage DNA into bacterial cells but instead block an early step of the viral life cycle. In this context, we used RNA sequencing of S. venezuelae cells infected with phage Alderaan to comparatively investigate the influence of apramycin on phage DNA tanscription at two different time points after inital infection.
Project description:Objectives: determination of transcription start sites in Vibrio harveyi genome and discovery of new transcripts Methods: we performed differential seqencing of total RNA isolated from o.n. control Vibrio harveyi cultures. Sample treatment with Terminator EXonuclease (TEX) allowed differenciation of primary and secondary transcripts, helping in the definition of transcription start sites (TSS) Results: by data-mining RNA-seq data and performing some Northern Blot experiments we were able to detect new putative small-RNAs, along with these results, a more deep analisys of our RNA-seq data will give futher insight into genetic organization of Vibrio harveyi genome to help in its investigation