Project description:Chronic tissue injury caused by localized radiotherapy alters the microenvironment including stem cell niches, and leads to wound healing inhibition. We precultured human adipose-derived stem cells (hASCs) on recombinant collagen peptide (RCP) scaffold, and the cells showed upregulation of cell proliferation genes and extracellular-matrix genes, compared with hASCs cultured on normal dish. Also, pathway analyses revealed hASC cultured on RCP had gene expression pattern of inflammatory suppression, cell growth promotion and activation of certain growth factors including VEGF, HGF and TGF-β1, suggesting biological activity of RCP scaffold. In chronic radiation mice models (a total of 20 Gy radiation 4 weeks in advance), treatment with hASCs and human umbilical vein endothelial cells (HUVECs) precultured on RCP achieved the best wound healing acceleration, compared with hASC on RCP group, RCP only group, and control group which showed better healing in this order. RCP scaffold, and combination use of hASCs and ECs, could be a safe, effective and practical therapeutic tool for a variety of stem cell-depleted conditions such as chronic postirradiation tissues.
Project description:To exploit the therapeutic mechanism of our proposed alkaline phosphatase-controllable and red light-activated RNA modification approach at the genetic level, we established an RNA-modified group (f-RCP+660 nm) and non-RNA-modified group (RCP+660 nm) in HepG2 cells.
Project description:Besides promoting inflammation by mobilizing lipid mediators, secreted phospholipase A2 group IIA (sPLA2-IIA) prevents bacterial infection by degrading bacterial membranes. Here we show that despite the restricted intestinal expression of sPLA2-IIA in BALB/c mice, its genetic deletion leads to amelioration of cancer and exacerbation of psoriasis in distal skin. Intestinal expression of sPLA2-IIA is reduced after antibiotics treatment or under germ-free conditions, suggesting its upregulation by gut microbiota. Metagenome, transcriptome and metabolome analyses have revealed that sPLA2-IIA deficiency alters the gut microbiota, accompanied by notable changes in the intestinal expression of genes related to immunity and metabolism as well as the levels of various blood metabolites and fecal bacterial lipids, suggesting that sPLA2-IIA contributes to shaping of the gut microbiota. The skin phenotypes in Pla2g2a–/– mice are lost when they are co-housed with littermate wild-type mice, resulting in mixing of the microbiota between the genotypes, or when they are housed in a more stringent pathogen-free facility, where Pla2g2a expression in wild-type mice is low and the gut microbial compositions in both genotypes are nearly identical. Thus, our results highlight a new aspect of sPLA2-IIA as a modulator of gut microbiota, perturbation of which affects distal skin responses.
2022-01-01 | GSE182283 | GEO
Project description:gut metagenome in mice treated with pesticide
| PRJNA1086658 | ENA
Project description:gut metagenome of TCP treated ICR mice
| PRJNA1104810 | ENA
Project description:Gut metagenome analysis of morel treated mice
Project description:The aim of this project was to explore the role of gut microbiota in the development of small intestine. The gut microbiota from different groups was used to treat the mice for 1 or 2 weeks. Then the small intestine samples were collected. The RNA was used for the RNA-seq analysis to search the role of gut microbiota in the development of small intestine. Groups: IMA100 mean gut microbiota from Alginate oligosaccharide 100mg/kg treated mice; IMA10 mean gut microbiota from Alginate oligosaccharide 10mg/kg treated mice; IMC mean gut microbiota from control group mice (dosed with water); Sa mean dosed with saline (no gut microbiota). "1" mean dosed for 1 week, "2" means dosed for 2 weeks.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups