Project description:Tra1 is an essential component of both the yeast SAGA/SLIK and NuA4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. This submission contains RNA sequencing data from Saccharomyces cerevisiae strains expressing a Tra1 mutant with three arginine to glutamine mutations in the PI3K domain (tra1Q3; Berg et al., 2018). Our goal was to identify how gene expression profile changes during the chronological aging process due to mutation in the PI3K domain of Tra1.
Project description:Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes and is linked to multiple cellular processes associated with the yeast response to antifungal drugs. This submission contains RNA sequencing data from Saccharomyces cerevisiae strains expressing a Tra1 mutant with three arginine to glutamine mutations in the PI3K domain (tra1Q3; Berg et al., 2018). Our goal was to identify how gene expression changes due to mutation to the PI3K domain of Tra1.
Project description:Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the phosphatidylinositol 3-kinase (PI3K) related kinase family that contain a C- terminal PI3K domain followed by a ~ 35-residue FATC domain. We have characterized four alleles with single residue changes in the FATC domain. Of these tra1-L3733A had the most pronounced effects with phenotypes including temperature and cold sensitivity, and reduced growth in media containing ethanol, Calcofluor white, rapamycin, chloramphenicol and geneticin. Tra1-L3733A interacted at normal levels with components of the NuA4 and SAGA complexes, and did not significantly alter histone acetylation patterns. The tra1-L3733A allele resulted in two-fold or greater change in expression of approximately 11% of yeast genes in rich media. Of the 279 genes with increased expression, 175 were ribosomal subunits or involved in ribosomal function or biogenesis. Elevated levels of Pol I and Pol III transcripts were also observed. The phenotypes of the tra1-L3733A overlapped with but were not identical to strains containing deletions of SAGA or NuA4 components or with strains containing mutations in the PI3K domain. Our finding that the double mutant allele, tra1-SRR3413/L3733A with alterations in the PI3K and FATC domains, resulted in wild type growth, suggests a model whereby the FATC domain negatively regulates the activity of the PI3K domain. Expression of genes involved in ribosome biosynthesis, other than the ribosomal subunits themselves, returned to near normal levels in the double mutant strain. We also characterized tra1-G3745, which contains an additional glycine residue following the normal C-terminal phenylalanine. This allele did not support viability and showed severe dominant negative effects. In contrast to what was observed for tra1-L3733A, tra1-G4745 resulted in decreased expression of genes required for ribosome biogenesis and did not interact with Esa1 or Spt7.
Project description:Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the phosphatidylinositol 3-kinase (PI3K) related kinase family that contain a C- terminal PI3K domain followed by a ~ 35-residue FATC domain. We have characterized four alleles with single residue changes in the FATC domain. Of these tra1-L3733A had the most pronounced effects with phenotypes including temperature and cold sensitivity, and reduced growth in media containing ethanol, Calcofluor white, rapamycin, chloramphenicol and geneticin. Tra1-L3733A interacted at normal levels with components of the NuA4 and SAGA complexes, and did not significantly alter histone acetylation patterns. The tra1-L3733A allele resulted in two-fold or greater change in expression of approximately 11% of yeast genes in rich media. Of the 279 genes with increased expression, 175 were ribosomal subunits or involved in ribosomal function or biogenesis. Elevated levels of Pol I and Pol III transcripts were also observed. The phenotypes of the tra1-L3733A overlapped with but were not identical to strains containing deletions of SAGA or NuA4 components or with strains containing mutations in the PI3K domain. Our finding that the double mutant allele, tra1-SRR3413/L3733A with alterations in the PI3K and FATC domains, resulted in wild type growth, suggests a model whereby the FATC domain negatively regulates the activity of the PI3K domain. Expression of genes involved in ribosome biosynthesis, other than the ribosomal subunits themselves, returned to near normal levels in the double mutant strain. We also characterized tra1-G3745, which contains an additional glycine residue following the normal C-terminal phenylalanine. This allele did not support viability and showed severe dominant negative effects. In contrast to what was observed for tra1-L3733A, tra1-G4745 resulted in decreased expression of genes required for ribosome biogenesis and did not interact with Esa1 or Spt7. Three biological replicate experiments including one dye-swap were performed for yeast strains CY3003(TRA1::Tn10LUK with IB150(myc9-tra1_L3733A-YCplac111)) and CY3015(TRA1::Tn10LUK with IB157(myc9-tra1_SRR3413_L3733A-YCplac111)) with reference to CY2706(TRA1::Tn10LUK with 1980(myc9-TRA1-YCplac111)). Similarly, three biological replicate experiments including one dye-swap were performed for yeast strain CY3019(TRA1::Tn10LUK with 1259(myc-TRA1-YCplac111) and IB162(myc9-tra1_G3745-YCplac111)) with reference to CY3020(TRA1::Tn10LUK with 1259(myc-TRA1-YCplac111) and IB160(myc9-TRA1-YCplac111)).
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:We report the genome-wide localization of Sgo1p in mitosis of Saccharomyces cerevisiae using ChIP-seq. The high resolution mapping clearly shows a tripartite domain of Sgo1p in each mitotic chromosome. This domain requires the wildtype tension sensing motif (TSM) of histone H3.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:The conserved Saccharomyces cerevisiae kinase/ATPase Rio1 downregulates rDNA transcription to promote rDNA stability and segregation. To uncover additional roles in transcriptional regulation beyond the rDNA locus we defined the global Rio1 transcriptiome. By NGS we identify 818 differentially expressed genes that are under the transcriptional control of Rio1.