Project description:Genomic surveys of yeast hybrid species isolated from the wild and from human-related environment, aimed at the reconstruction of the natural evolution of Saccharomyces spp. evolution
Project description:Genome wide methylation profiling of SUM159PT NNMT WT, KOs and KOd cells. The Illumina human Infinium Methylation EPIC BeadChip was used to measure global DNA methylation on CpG from 850 k probes. Samples include three experimental replicates from each cell line.
Project description:By integrating sequence information from closely related bacteria with a compendium of high-throughput gene expression datasets, a large-scale transcriptional regulatory networks was constructed for Rhodobacter sphaeroides. Predictions from this network were validated in part using genome-wide analysis for 3 transcription factors (PpsR, RSP_0489 and RSP_3341). Genome-wide protein-DNA interaction analysis of 3 transcription factors predicted to be involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341) were used to validate predictions from a large-scale reconstruction of R. sphaeroides transcriptional regulatory network.
Project description:Small RNA-induced transcriptional silencing at transposable elements and other DNA repeats is an evolutionarily conserved mechanism in plants, fungi, and animals. In Arabidopsis thaliana, an RNA-directed DNA methylation pathway is involved in transcriptional silencing. Noncoding RNAs produced by the plant-specific DNA-dependent RNA polymerase V are required for RNA-directed DNA methylation. A chromatin-remodeling complex was previously demonstrated to be required for the occupancy of DNA-dependent RNA polymerase V at RNA-directed DNA methylation loci. Our results suggest that two putative histone methyltransferases are inactive in their enzymatic activity and act as adaptor proteins to facilitate the recruitment of DNA-dependent RNA polymerase V to chromatin by associating with the chromatin-remodeling complex. In combination with previous studies, we propose that the inactive histone methyltransferases bind to methylated DNA, thereby linking DNA methylation to Pol V transcription at RNA-directed DNA methylation loci.