Project description:Trichoderma harzianum CECT 2413 expression in liquid basal medium and in the presence of glucose, chitin or tomato plants. Four different experimental conditions were carried out: basal (MS), glucose (MS-G), chitin (MS-Q) and tomato plant (MS-P). Two biological replicates were analyzed by microarray for each experimental condition. Three independent cultures of mycelium were pooled for each biological replicate.
Project description:A self-designed Trichoderma high density oligonuclotide (HDO) microarray (Roche-NimbleGen, Inc., Madison, WI, USA) was constructed in a similar way than a previous Trichoderma HDO microarray (Samolski et al., 2009). The microarray was composed of 392,779 60-mer probes designed against 13,443 EST-derived transcripts (Trichochip-1) and the genomes of T. atroviride (11,100 genes) and T. virens (11,643 genes). The Trichochip-1 ESTs were obtained from 28 cDNA libraries from eight different species (representing the biodiversity of this genus: T. harzianum, T. atroviride, T. asperellum, T. viride, T. longibrachiatum, T. virens, T. stromaticum and T. aggresivum), under a wide range of growth conditions, including biocontrol-related conditions and different nutritional situations (VizcaÃno et al., 2006). The Trichochip1 EST database was generated in the TrichoEST project funded by the EU (QLK3-CT-2002-02032). Confrontations were carried out between the T. harzianum T34 or nox1 overexpressed transformant Tnox5 and P. ultimum. Agar plugs cut from the growing edge of a 4-day colony of Trichoderma and Pythium were placed 2 cm from the border on the opposite side of the same petri plates containing PDA covered with sterile cellophane sheets. Dual cultures were allowed to grow at 25 ºC and mycelia were collected from the interaction zone in confrontations between P. ultimum and T. harzianum T34 or Tnox5 strains. Seven PDA plates were used for each condition considered and RNAs were extracted and the corresponding cDNAs were use to hybridize by triplicate the Trichoderma HDO microarray.
Project description:Trichoderma harzianum T34 is a fungal strain able to promote the plant growth and to increase plant defense responses. Trichoderma harzianum transformants expressing the amdS gene, encoding an acetamidase, of Aspergillus nidulans produce a higher plant development than the wild type T34. We used microarrays to analyze the physiological and biochemical changes in tomato plants produced as consequence of interaction with Trichoderma harzianum T34 and amdS transformants