Project description:Background: Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results: To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions: The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high. Detection of gene expression variance among Frankia HfpCci3 (Cci3) cells grown in ammonium chloride for three days, five days and HfpCci3 cells grown in nitrogen fixing conditions for three days using mRNA-seq
Project description:Background: Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results: To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions: The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high.
Project description:The actinobacteria Frankia alni is able to induce the formation of nodules on the root of a large spectrum of actinorhizal plants, where it converts dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living cells and on Alnus glutinosa nodule bacteria, using whole genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to symbiosis were highly induced: nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster) and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signalling processes, protein drug export, protein secretion, lipopolysaccharide and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We showed that this nodule transcriptome of Frankia was highly similar among phylogenetically distant plant families.
Project description:The actinobacteria Frankia alni is able to induce the formation of nodules on the root of a large spectrum of actinorhizal plants, where it converts dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living cells and on Alnus glutinosa nodule bacteria, using whole genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to symbiosis were highly induced: nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster) and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signalling processes, protein drug export, protein secretion, lipopolysaccharide and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We showed that this nodule transcriptome of Frankia was highly similar among phylogenetically distant plant families. To address gene expression changes of Frankia alni ACN in the symbiotic state, we compared transcript levels between young nodules formed on 4 species of trees (Alnus glutinosa, Alnus nepalensis, Myrica gale and Myrica rubra) and free-living cells grown in nitrogen-replete minimal medium. For A. glutinosa nodule and free-living cells, two sets of experiments (A and B) were performed in two different laboratories. Three biological replicates were preformed for each condition.
Project description:A transcriptome of Cluster II Frankia in nitrogen-fixing root-nodule symbiosis with the host plant, Datisca glomerata, was obtained by Illumina sequencing and mapping to the corresponding published genome (NCBI Bioproject PRJNA46257). Major metabolic pathways detected in Cluster II Frankia in symbiosis with Datisca glomerata were comparable to those described as up-regulated in the Frankia alni-Alnus glutinosa symbiosis (N Alloisio et al, MPMI 23(5):593-607, 2010): nitrogenase biosynthesis, tricarboxylic acid cycle, respiratory-chain related functions, oxidation protection, and terpenoid biosynthesis. These functions are consistent with the primary activities of Frankia in root nodules, e.g. to carry out the energetically-demanding fixation of atmospheric dinitrogen to ammonium, and to maintain internal reducing conditions. Expression of genes coding for amino-acid biosynthetic pathways, including arginine as reported previously (AM Berry et al. Funct Plant Biol 38, 645–652, 2011) was detected. A striking difference from other Frankia strains, revealed in the transcriptome of the Cluster II Frankia in symbiosis, was the expression of homologs of rhizobial nodulation genes, nodA, nodB and nodC.
Project description:Purpose: To compare RNASeq data of Frankia inefficax EuI1c in normal growth conditions to biphenyl-stressed Frankia inefficax EuI1c. Frankia cultures were grown for 3 days under one of three conditions before harvesting: 1.) 1 mM biphenyl stress with glucose as an alternative carbon and energy source, 2.) 1mM biphenyl with no alternative carbon or energy source, or 3.) media with glucose as a carbon and energy source (Control). RNA-seq analysis provided insight into how the the bacteria responds to biphenyl stress and exhibits biphenyl tolerance.
Project description:Purpose: To compare RNASeq data of Frankia strains (EAN1pec, EuIC and EUN1f) under nitrogen stress. Frankia cultures were grown for 2 days under nitrogen replete (+NH4) or nitrogen- deficient (N2) conditions. RNA-seq analysis provided insight into how the the bacteria responds to nitrogen stress.
Project description:Purpose: To compare RNASeq data of Frankia CcI3 in plants under salt stress. Casuarina glauca root nodules infected with Frankia CcI3 were exposed to either no salt or 100 mM NaCl for 21 days. RNA-seq analysis provided insight into how the sybiont responds to salt stress.
Project description:Purpose: To compare RNASeq data of Frankia inefficax EuI1c under selenite stress. Frankia cultures were grown for 4 days under 0.1 mM selenite stress or without selenite (Control). RNA-seq analysis provided insight into how the the bacteria responds to selenite stress and exhibits selenite tolerance.