Project description:We report the application of RNA-sequencing technology for high-throughput profiling of Drosophila that express clinical variants of feline-MyBPC3 associated with Hypertrophic Cardiomyopathy (HCM).
Project description:Restrictive cardiomyopathy (RCM) is a severe cardiac disorder characterized by impaired ventricular filling and diastolic dysfunction, with mutations in sarcomeric proteins representing major causative factors. Mutations of TNNI3 gene (e.g. p.R192H) constitute major genetic causes of RCM, particularly affecting pediatric patients and being associated with poor prognosis. Here, we demonstrate that adenine base editor (ABE) is able effectively correct RCM-causing mutation and alleviate RCM in a murine model. We first developed a novel murine model harboring the Tnni3R193H mutation that recapitulates the hallmark features of human RCM. Importantly, targeted delivery of ABE via adeno-associated virus (AAV) achieved efficient and precise correction of the Tnni3R193H mutation in adult RCM mice, leading to significant improvement of cardiac functions. Our findings establish base editing as a therapeutic strategy for RCM and highlight its broader potential for treating genetic cardiomyopathies in clinical settings.
Project description:Despite evolving stem cell and organoid application of next-generation sequencing (NGS) at single cell level, current techniques in NGS library preparation are restrictive as individual samples within a single library are indistinguishable, necessitating the laborious and costly preparation of distinct libraries for each sample. To combat this challenge, we report the development of a novel poly(ß-amino) ester labeling system synthesized with inexpensive, common reagents, termed POLYseq, capable of efficiently delivering fluorescent molecules or sample-distinguishing DNA barcodes through non-covalent binding enabling rapid creation of custom libraries.