Project description:Proteins are ubiquitous macromolecules displaying a vast repertoire of chemical and enzymatic functions making them suitable candidates for chemosignals used in intraspecific communication. Proteins are present in skin gland secretions of vertebrates but their identity, and especially, their functions, remain largely unknown. Many species of lizards possess femoral glands, i.e. epidermal organs primarily involved in the production and secretion of chemosignals playing a pivotal role in mate choice and intrasexual communication. The lipophilic fraction of femoral glands has been well studied in lizards. In contrast, proteins have been the focus of only a handful of investigations. Here, we study the identity, inter-individual expression patterns and functionality of proteins present in femoral glands of sand lizards (Lacerta agilis) by applying mass-spectrometry proteomics. Our results showed that the total number of proteins varied substantially among individuals. None of the identified femoral gland proteins could be directly linked to chemical communication in lizards, although this result hinges on protein annotation in databases in which squamate semiochemicals are poorly represented. In contrast to our expectations, proteins consistently expressed across individuals were related to immune system, antioxidant activity and lipid metabolism as the main functions, adding support to the hypothesis that proteins in reptilian epidermal glands have other functions besides chemical communication. Interestingly, we found that major histocompatibility complex class I (MHC) expression is enriched in femoral gland secretions. Previously, MHC was hypothesized to have been coopted to serve a semiochemical function in sand lizards, specifically in partner recognition. We speculate with the possibility that MHC proteins could be linked to semiochemical function in sand lizards.
Project description:Four pools of digestive glands were treated as biological replicates in order to evaluate the repeatability of Ruditapes philippinarum oligo microarray platform.
Project description:Spingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. The objectives of this study were to characterize how strain RW1 responses to changes in different components of the total water potential (solute and matric potential) and to then connect these responses to more realistic scenarios of soil desiccation. To accomplish this task, transcriptome profiling was used to investigate the effects of decreasing the solute potential with sodium chloride (solute stress), decreasing the matric potential with high-molecular weight polyethylene glycol (matric stress), or inoculating cells directly into unsaturated sand (sand desiccation stress). Transcriptome profiling revealed a general response to solute, matric, and sand desiccation stress that involved synthesizing trehalose and modifying the composition of exopolysaccarides. Transcriptome profiling also revealed responses that were unique to each stress. Only solute and matric stress triggered the down-regulation of flagella genes. Only solute and sand desiccation stress triggered the up-regulation of two RNA polymerase ECF-type sigma factors along with several membrane proteins, mechanosensitive channels, and solute transporters. Finally, only matric stress triggered the up-regulation of the RNA polymerase sigma-32 factor along with several molecular chaperones. Together, this study revealed a general response to solute, matric and sand desiccation stress but also unique responses to only a subset of these stresses, suggesting that each stress affects strain RW1 in a fundamentally different way.
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills and digestive gland of R. philippinarum. For each tissue, total RNA was extracted from three (3) independent biological replicates of digestive gland and gills, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified 8,257 probes differentially expressed between the two different tissues.
Project description:Four pools of digestive glands were treated as biological replicates in order to evaluate the repeatability of Ruditapes philippinarum oligo microarray platform. In this study, we analyzed four (4) independent pools of Ruditapes philippinarum digestive glands. Gene expression profiling was performed using the Agilent-027304 Ruditapes philippinarum Oligo Microarray platform (1 arrays) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Spingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. The objectives of this study were to characterize how strain RW1 responses to changes in different components of the total water potential (solute and matric potential) and to then connect these responses to more realistic scenarios of soil desiccation. To accomplish this task, transcriptome profiling was used to investigate the effects of decreasing the solute potential with sodium chloride (solute stress), decreasing the matric potential with high-molecular weight polyethylene glycol (matric stress), or inoculating cells directly into unsaturated sand (sand desiccation stress). Transcriptome profiling revealed a general response to solute, matric, and sand desiccation stress that involved synthesizing trehalose and modifying the composition of exopolysaccarides. Transcriptome profiling also revealed responses that were unique to each stress. Only solute and matric stress triggered the down-regulation of flagella genes. Only solute and sand desiccation stress triggered the up-regulation of two RNA polymerase ECF-type sigma factors along with several membrane proteins, mechanosensitive channels, and solute transporters. Finally, only matric stress triggered the up-regulation of the RNA polymerase sigma-32 factor along with several molecular chaperones. Together, this study revealed a general response to solute, matric and sand desiccation stress but also unique responses to only a subset of these stresses, suggesting that each stress affects strain RW1 in a fundamentally different way. Comparative transcriptome profiling was performed to assess the effects of acute (30 min) solute and matric stress (3 samples for acute solute stress, 3 samples for acute matric stress, 3 controls), the effects of chronic (24 hours) solute and matric stress (3 samples for chronic solute stress, 3 samples for chronic matric stress, 3 controls), and the effects of sand desiccation stress (4 samples for sand desiccation treatment, 3 controls).
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills and digestive gland of R. philippinarum. For each tissue, total RNA was extracted from three (3) independent biological replicates of digestive gland and gills, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified 8,257 probes differentially expressed between the two different tissues. In this study, we analyzed six (6) samples, three (3) pools of digestive gland and three (3) pools of gills. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.