Project description:Antimicrobial resistance (AMR) is one of the major challenges that humans are facing this century. Understanding the mechanisms behind the rise of AMR is crucial to tackle this global threat. Among the triggers of phenotypic antimicrobial resistance, the contribution of transition metals has been understudied in Mycobacterium abscessus (Mabs), a fast-growing non-tuberculous mycobacterium known for its extreme AMR levels. Deeper understanding of the effects of transition metal ions will be beneficial for our knowledge in AMR and the discovery of potential therapeutic targets. Here, we investigated the impact of transition metal ions, nickel, cobalt and copper on the physiology and drug susceptibility of Mabs.
Project description:The presence of Donor-Specific anti-HLA Antibodies (DSA) is associated with an increased risk of both acute and chronic antibody-mediated rejection (AMR) in kidney allografts. AMR has remained challenging in kidney transplantation and is the major cause of late allograft loss. However, not all patients with DSA develop AMR, leading to the question of whether this represents accommodation, if other protective mechanisms exist or if this is actually a state of pre-rejection. Clinical and histological features, and gene expression profiles of kidney biopsy and blood samples of donor-specific antibody (DSA)+ patients without rejection were compared to antibody-mediated rejection (AMR) patients to elucidate the mechanisms involved in prevention of AMR. Of the 71 DSA+ patients, 46 had diagnosis of AMR and 25 did not show rejection. 50 DSA- patients without rejection were used as control. A subgroup of patients with available biopsy (n=61) and blood samples (n=54) were analyzed by microarrays. Both, DSA+/AMR+ and DSA+/AMR- biopsies showed increased expression of gene transcripts associated with cytotoxic T, natural killer cells, macrophages, interferon-gamma and rejection compared to DSA- biopsies. Regulatory T cell transcripts were up-regulated in DSA+/AMR+ and B cell transcripts in DSA+/AMR- biopsies. Whole blood gene expression analysis showed increased immune activity in only DSA+/AMR+ patients. There were no differentially expressed tolerant genes studied (n=14) in the blood or biopsy specimens of DSA+/AMR- patients. During a median 36 months follow-up, 4 DSA+/AMR- patients developed AMR, 12 continued to have DSAs but 9 lost DSAs. Gene expression profiles did not predict the development of AMR or persistence of DSAs. These results indicate increased immune activity in DSA+/AMR- biopsies despite lack of histologic findings of rejection.