Project description:Antimicrobial resistance (AMR) is one of the major challenges that humans are facing this century. Understanding the mechanisms behind the rise of AMR is crucial to tackle this global threat. Among the triggers of phenotypic antimicrobial resistance, the contribution of transition metals has been understudied in Mycobacterium abscessus (Mabs), a fast-growing non-tuberculous mycobacterium known for its extreme AMR levels. Deeper understanding of the effects of transition metal ions will be beneficial for our knowledge in AMR and the discovery of potential therapeutic targets. Here, we investigated the impact of transition metal ions, nickel, cobalt and copper on the physiology and drug susceptibility of Mabs.
Project description:The presence of Donor-Specific anti-HLA Antibodies (DSA) is associated with an increased risk of both acute and chronic antibody-mediated rejection (AMR) in kidney allografts. AMR has remained challenging in kidney transplantation and is the major cause of late allograft loss. However, not all patients with DSA develop AMR, leading to the question of whether this represents accommodation, if other protective mechanisms exist or if this is actually a state of pre-rejection. Clinical and histological features, and gene expression profiles of kidney biopsy and blood samples of donor-specific antibody (DSA)+ patients without rejection were compared to antibody-mediated rejection (AMR) patients to elucidate the mechanisms involved in prevention of AMR. Of the 71 DSA+ patients, 46 had diagnosis of AMR and 25 did not show rejection. 50 DSA- patients without rejection were used as control. A subgroup of patients with available biopsy (n=61) and blood samples (n=54) were analyzed by microarrays. Both, DSA+/AMR+ and DSA+/AMR- biopsies showed increased expression of gene transcripts associated with cytotoxic T, natural killer cells, macrophages, interferon-gamma and rejection compared to DSA- biopsies. Regulatory T cell transcripts were up-regulated in DSA+/AMR+ and B cell transcripts in DSA+/AMR- biopsies. Whole blood gene expression analysis showed increased immune activity in only DSA+/AMR+ patients. There were no differentially expressed tolerant genes studied (n=14) in the blood or biopsy specimens of DSA+/AMR- patients. During a median 36 months follow-up, 4 DSA+/AMR- patients developed AMR, 12 continued to have DSAs but 9 lost DSAs. Gene expression profiles did not predict the development of AMR or persistence of DSAs. These results indicate increased immune activity in DSA+/AMR- biopsies despite lack of histologic findings of rejection.
Project description:The presence of Donor-Specific anti-HLA Antibodies (DSA) is associated with an increased risk of both acute and chronic antibody-mediated rejection (AMR) in kidney allografts. AMR has remained challenging in kidney transplantation and is the major cause of late allograft loss. However, not all patients with DSA develop AMR, leading to the question of whether this represents accommodation, if other protective mechanisms exist or if this is actually a state of pre-rejection. Clinical and histological features, and gene expression profiles of kidney biopsy and blood samples of donor-specific antibody (DSA)+ patients without rejection were compared to antibody-mediated rejection (AMR) patients to elucidate the mechanisms involved in prevention of AMR. Of the 71 DSA+ patients, 46 had diagnosis of AMR and 25 did not show rejection. 50 DSA- patients without rejection were used as control. A subgroup of patients with available biopsy (n=61) and blood samples (n=54) were analyzed by microarrays. Both, DSA+/AMR+ and DSA+/AMR- biopsies showed increased expression of gene transcripts associated with cytotoxic T, natural killer cells, macrophages, interferon-gamma and rejection compared to DSA- biopsies. Regulatory T cell transcripts were up-regulated in DSA+/AMR+ and B cell transcripts in DSA+/AMR- biopsies. Whole blood gene expression analysis showed increased immune activity in only DSA+/AMR+ patients. There were no differentially expressed tolerant genes studied (n=14) in the blood or biopsy specimens of DSA+/AMR- patients. During a median 36 months follow-up, 4 DSA+/AMR- patients developed AMR, 12 continued to have DSAs but 9 lost DSAs. Gene expression profiles did not predict the development of AMR or persistence of DSAs. These results indicate increased immune activity in DSA+/AMR- biopsies despite lack of histologic findings of rejection. All clinically indicated kidney transplant biopsies performed at our institution after January 2009 were reviewed and 263 patients with anti-HLA antibody testing at the time of biopsy were identified. There were 71 DSA+ and 192 DSA- patients (Figure 1). Of the 71 DSA+ patients, 46 had biopsy diagnosis of acute AMR (n=9) or chronic AMR (n=37), and 25 had normal histopathology or minimal non-specific interstitial fibrosis/tubular atrophy (IFTA). Of the 192 DSA- patients, 50 patients with normal histology and/or mild non-specific IFTA were used as a control group. Clinical and histopathological findings of these 3 groups (DSA+/AMR+, DSA+/AMR- and DSA-) were analyzed. A subgroup of patients who were enrolled in the Institutional Review Board-approved âImmune Monitoring Studyâ who had clinically indicated biopsy (n=61) and whole blood samples (n=54) stored were used for genomic analysis. Twenty-eight biopsy and blood samples from DSA+/AMR+ patients, 13 biopsy and 14 blood samples from DSA+/AMR- patients, and 20 biopsy and 12 blood samples from DSA- patients, were available for microarray analysis.
Project description:Kidney transplant biopsies showing transplant glomerulopathy (cg > 0) and microvascular inflammation (MVI) in the absence of C4d staining and DSAs do not fulfill the criteria for chronic active antibody-mediated rejection (CA-AMR) diagnosis or any other Banff category. In this multicenter intercontinental study including 36 cases, we compared, among other types of data, the transcriptomic profiles of 14 KTx biopsies classified as cg+MVI DSA-/C4d- with 22 classified as CA-AMR DSA+/C4d+ through novel transcriptomic analysis using the NanoString B-HOT panel. Due to lack of tissue, one sample was excluded from the transcriptomic analysis. In our analysis, nineteen genes were differentially expressed between the two study groups. Samples diagnosed with CA-AMR DSA+/C4d+ showed a higher transcriptomic cell type scores for macrophages in an environment characterized by increased expression of complement-related genes (i.e., C5AR1) and higher activity of angiogenesis, IFTA, CA-AMR, and DSA-related pathways when compared to samples diagnosed with cg+MVI DSA-/C4d-. Samples diagnosed with cg+MVI DSA-/C4d- displayed a higher activity of the T-cell receptor and B-cell associated transcripts. These results were coherent with those from our 5-plex immunofluorescence orthogonal analyses showing higher abundance of innate immune cells in the interstitium of CA-AMR DSA+/C4d+ samples when compared to cg+MVI DSA-/C4d- samples and a higher glomerular abundance of pan-T-cells in cg+MVI DSA-/C4d- samples when compared to CA-AMR DSA+/C4d+ samples. Here we show that using novel multiomic techniques, KTx biopsies with cg+MVI DSA-/C4d- have a prominent T-cell presence and activity, putting forward the possibility that these represent a more T-cell-dominant phenotype.