Project description:stable CRISPR/Cas9 sgRNA-expression U251 cells were treated with 200nM or 1500nM temozolomide for 72 hours, and then, we screened temozolomide-resistance genes by negative selection and temozolomide-sensitive genes by positive selection
Project description:Acquired resistance of temozolomide (TMZ) is one of the major obstacle of glioblastoma clinical treatment and the mechanism of TMZ resistance is still not very clear. In the presented research we show that deletion of rs16906252-associated MGMT enhancer in MGMT negative glioma cells induced increase sensitivity to temozolomide and combination of RNA-seq and Capture HiC identified several long-range target genes of rs16906252-associated MGMT enhancer. In addition, HiC data shows alterations of chromatin structures in glioma cells survived from high-dosage TMZ treatment and changes of TADs influence rs16906252-associated MGMT enhancer’s long-range regulations of target genes. Our study suggests rs16906252-associated MGMT enhancer regulates glioma cells’ TMZ sensitivity by long-range regulations of several target genes, which is a novel mechanism of regulation of TMZ sensitivity in glioma cells.
Project description:Temozolomide (TMZ) resistance of glioma cells is currently a critical problem in glioma clinical treatment. In this study, we reveal a bivalent function of a super-enhancer RNA LINC02454 in modulating glioma cell sensitivity to TMZ via regulation of SORBS2 and DDR expression. LINC02454 increased TMZ sensitivity by maintaining 3D chromatin structure and promoting SORBS2 expression, but paradoxically decreased TMZ sensitivity by binding to the DDR1 locus and promoting DDR1 transcription. This study proposes a new regulatory mechanism governing glioma cell sensitivity to TMZ and provides new insights that may improve therapies against glioma.
Project description:Using the human glioblastoma cell line LN229, temozolomide was used to detect proteome changes and identify critical components regulating chemotherapy sensitivity.
Project description:Temozolomide (TMZ) is a frequently used chemotherapy for glioma; however, chemoresistance is a major problem limiting its effectiveness. Thus knowledge of mechanisms underlying this outcome could improve patient prognosis. Here, we report that deletion of a regulatory element in the HOTAIR locus increases glioma cell sensitivity to TMZ and alters transcription of multiple genes. Analysis of a combination of RNA-seq, Capture HiC and patient survival data suggests that CALCOCO1 and ZC3H10 are target genes repressed by the HOTAIR regulatory element and that both function in regulating glioma cell sensitivity to TMZ. Rescue experiments and TAD analysis based on HiC data confirmed this hypothesis. We propose a new regulatory mechanism governing glioma cell TMZ sensitivity.
Project description:The gene expression profiles were identified in glioblastoma cells treated with FAK inhibitor Y15, temozolomide alone or with combination of Y15 and Temozolomide DBTRG and U87 were treated with FAK inhibitor Y15 at 10 microM for 24 h; U87 cells were treated with Temozolomide 100 microM for 24 h and Y15+temozolomide at the same dose as each agent alone
Project description:To investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ)
Project description:Hippo effectors YAP/TAZ act as on-off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described so far through a hierarchical model in which elements of Hippo pathway are under the control of Focal Adhesions (FAs). Here we unveiled the molecular mechanism by which cell spreading and RhoA GTPase control FA formation through YAP to stabilize the anchorage of actin cytoskeleton to cell membrane. This mechanism required YAP co-transcriptional function and involved the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity led to the modification of cell mechanics, force development, adhesion strength, determined cell shaping, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify Hippo effector as the key determinant of cell mechanics in response to ECM cues.
Project description:Transcriptional profiling of glioma cells comparing control U87(Temozolomide sensitive) cells with U87R(Temozolomide resistant). The U87 cell line was given a low dose of temozolomide in culture media for 3 weeks, resulting in the formation of temozolomide-resistant cells made as U87R.
Project description:Introduction:Temozolomide (TMZ) is the first-line chemotherapeutic option to treat glioma; however, its efficacy and clinical application are limited by its drug resistance properties. Polo-like kinase 1 (PLK1)-targeted therapy causes G2/M arrest and increases the sensitivity of glioma to TMZ. Therefore, to limit TMZ resistance in glioma, an angiopep-2 (A2)-modified polymeric micelle (A2PEC) embedded with TMZ and a small interfering RNA (siRNA) targeting PLK1 (siPLK1) was developed (TMZ-A2PEC/siPLK). Materials and Methods:TMZ was encapsulated by A2-PEG-PEI-PCL (A2PEC) through the hydrophobic interaction, and siPLK1 was complexed with the TMZ-A2PEC through electrostatic interaction. Th?en, an angiopep-2 (A2) modified polymeric micelle (A2PEC) embedding TMZ and siRNA targeting polo-like kinase 1 (siPLK1) was developed (TMZ-A2PEC/siPLK). Results:In vitro experiments indicated that TMZ-A2PEC/siPLK effectively enhanced the cellular uptake of TMZ and siPLK1 and resulted in significant cell apoptosis and cytotoxicity of glioma cells. In vivo experiments showed that glioma growth was inhibited, and the survival time of the animals was prolonged remarkably after TMZ-A2PEC/siPLK1 was injected via their tail vein. Discussion:The results demonstrate that the combination of TMZ and siPLK1 in A2PEC could enhance the efficacy of TMZ in treating glioma.