Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
2016-12-10 | GSE91083 | GEO
Project description:Microbiome of tobacco rhizosphere soil under long-term continuous cropping conditions
| PRJNA982702 | ENA
Project description:Rhizosphere microbiota of continuous cropping of tobacco
| PRJNA1035762 | ENA
Project description:Responses of karst agricultural ecosystem to the long term continuous cropping of tobacco
Project description:Root exudate and rhizosphere microbiota contribute to the formation of suppressive soil after long-term continuous cropping of tobacco
| PRJNA1000231 | ENA
Project description:Effects of long-term continuous cropping on cucumber growth and rhizosphere microbial community
Project description:<p>Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.</p>
2024-03-19 | MTBLS6537 | MetaboLights
Project description:Rhizosphere bacterial diversity of tobacco in different continuous mono cropping years